Difference between revisions of "Aufgaben:Exercise 1.08: Comparison of ASK and BPSK"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1680__Dig_A_4_1.png|right|frame|Bit error probabilities <br>of ASK and BPSK]]
+
[[File:P_ID1680__Dig_A_4_1.png|right|frame|Bit error probabilities&nbsp; (ASK and BPSK)]]
The bit error probabilities of &nbsp;''Amplitude Shift Keying''&nbsp; (ASK) and &nbsp;''Binary Shift Keying''&nbsp; (BPSK) modulation modes are often given by the following two equations:
+
The bit error probabilities of &nbsp;"Amplitude Shift Keying"&nbsp; $\rm (ASK)$&nbsp; and &nbsp;"Binary Shift Keying"&nbsp; $\rm (BPSK)$&nbsp; modulation are often given by the following two equations:
 
:$$p_{\rm ASK}  = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
 
:$$p_{\rm ASK}  = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
 
:$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$
 
:$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$
  
These two equations are evaluated in the attached table. The following applies:
+
These equations are evaluated in the attached table.&nbsp; The following applies:
 
*$E_{\rm B}$&nbsp; indicates the average energy per bit.
 
*$E_{\rm B}$&nbsp; indicates the average energy per bit.
 
*$N_{0}$&nbsp; is the noise power density.
 
*$N_{0}$&nbsp; is the noise power density.
Line 14: Line 14:
  
  
It should be noted that these equations do not apply in general, but only under certain idealized conditions. These conditions are to be worked out in this exercise.
+
It should be noted that these equations do not apply in general,&nbsp; but only under certain idealized conditions.&nbsp; These conditions are to be worked out in this exercise.
  
  
  
  
 
+
Notes:  
 
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
''Notes:''
+
*You can check the results with the HTML5/JavaScript applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].&nbsp;  
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|Linear Digital Modulation - Coherent Demodulation]].
 
 
*You can check the results with the applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]].&nbsp;  
 
  
  
Line 32: Line 29:
 
<quiz display=simple>
 
<quiz display=simple>
 
{What is the relationship between &nbsp;${\rm Q}(x)$&nbsp; and &nbsp;${\rm erfc}(x)$?
 
{What is the relationship between &nbsp;${\rm Q}(x)$&nbsp; and &nbsp;${\rm erfc}(x)$?
|type="[]"}
+
|type="()"}
- &nbsp;${\rm Q}(x)= 2 \cdot{\rm erfc}(x)$ holds,
+
- &nbsp;${\rm Q}(x)= 2 \cdot{\rm erfc}(x)$,
+ &nbsp;${\rm Q}(x)= 0.5 \cdot{\rm erfc}(x)/\sqrt{2})$ holds,
+
+ &nbsp;${\rm Q}(x)= 0.5 \cdot{\rm erfc}(x)/\sqrt{2})$,
- &nbsp;${\rm erfc}(x)= 0.5 \cdot{\rm Q}(x)/\sqrt{2})$ holds.
+
- &nbsp;${\rm erfc}(x)= 0.5 \cdot{\rm Q}(x)/\sqrt{2})$.
  
 
{When do the given equations for the error probability apply?
 
{When do the given equations for the error probability apply?
 
|type="[]"}
 
|type="[]"}
 
+  They apply only to the AWGN channel.
 
+  They apply only to the AWGN channel.
+  They apply only to the matched filter receiver (or variants).
+
+  They apply only to the matched filter receiver&nbsp; (or variants).
 
-  The equations take into account intersymbol interfering.
 
-  The equations take into account intersymbol interfering.
 
-  The equations apply only to rectangular signals.
 
-  The equations apply only to rectangular signals.
Line 55: Line 52:
 
$ p_{\rm BPSK} \ = \ $ { 0.336 3% } $\ \cdot 10^{-4}$
 
$ p_{\rm BPSK} \ = \ $ { 0.336 3% } $\ \cdot 10^{-4}$
  
{The error probability should not exceed &nbsp;$10^{-8}$. What is the required &nbsp;$10 \cdot \lg \ E_{\rm B}/N_{0}$&nbsp; for ASK?
+
{The error probability should not exceed &nbsp;$10^{-8}$.&nbsp; What is the required &nbsp;$10 \cdot \lg \ E_{\rm B}/N_{0}$&nbsp; for ASK?
 
|type="{}"}
 
|type="{}"}
 
$(E_{\rm B}/N_{0})_{\rm min} \ = \ $ { 15 3% } $\ \rm dB $
 
$(E_{\rm B}/N_{0})_{\rm min} \ = \ $ { 15 3% } $\ \rm dB $
Line 65: Line 62:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; It is already obvious from the equations on the information page that <u>solution 2</u> is correct. The defining equations are:
+
'''(1)'''&nbsp; It is already obvious from the equations on the information page that&nbsp; <u>solution 2</u>&nbsp; is correct.&nbsp; The defining equations are:
 
:$$\rm Q ({\it x}) = \ \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
:$$\rm Q ({\it x}) = \ \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u
Line 72: Line 69:
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
By simple substitutions, the above relationship can be easily proved:
+
*By simple substitutions,&nbsp; the above relationship can be easily proved:
 
:$${\rm Q} ( x) = 1/2 \cdot {\rm erfc} (x/\sqrt{2}) \hspace{0.05cm}.$$
 
:$${\rm Q} ( x) = 1/2 \cdot {\rm erfc} (x/\sqrt{2}) \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; The <u>first two solutions</u> are correct:  
+
'''(2)'''&nbsp; The&nbsp; <u>first two solutions</u>&nbsp; are correct:  
*The equations are valid only for the AWGN channel and for an optimal binary receiver, for example, according to the matched filter approach.
+
*The equations are valid only for the AWGN channel and for an optimal binary receiver,&nbsp; for example,&nbsp; according to the matched filter approach.
*Intersymbol interfering &ndash; caused by the channel or the receiver filter &ndash; is not covered by this.
+
*Intersymbol interfering&nbsp; &ndash; caused by the channel or the receiver filter &ndash; is not covered by this.
*The exact transmission pulse shaping, on the other hand, does not matter as long as the receiver filter $H_{\rm E}(f)$ is matched to the transmission spectrum. Rather:
+
*The exact transmission pulse shaping,&nbsp; on the other hand,&nbsp; does not matter as long as the receiver filter&nbsp; $H_{\rm E}(f)$&nbsp; is matched to the transmission spectrum.&nbsp; Rather:
*Two different transmission pulse shapers $H_{\rm S}(f)$ lead to exactly the same error probability if they have the same energy per bit.
+
*Two different transmission pulse shapers&nbsp; $H_{\rm S}(f)$&nbsp; lead to exactly the same error probability if they have the same energy per bit.
  
  
  
 
'''(3)'''&nbsp; The results can be read directly from the table:
 
'''(3)'''&nbsp; The results can be read directly from the table:
:$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.343 \cdot 10^{-4}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.901 \cdot 10^{-8}}.$$
+
:$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.343 \cdot 10^{-4}},$$
 +
:$$p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.901 \cdot 10^{-8}}.$$
  
  
  
 
'''(4)'''&nbsp; With &nbsp;$E_{\rm B}/N_{0} = 8\  \Rightarrow \ 10  \cdot \lg \ E_{\rm B}/N_{0} \approx 9 \ \rm dB$,&nbsp; the following error probabilities are obtained:
 
'''(4)'''&nbsp; With &nbsp;$E_{\rm B}/N_{0} = 8\  \Rightarrow \ 10  \cdot \lg \ E_{\rm B}/N_{0} \approx 9 \ \rm dB$,&nbsp; the following error probabilities are obtained:
:$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.241 \cdot 10^{-2}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.336 \cdot 10^{-4}}.$$
+
:$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.241 \cdot 10^{-2}}$$
 +
:$$p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.336 \cdot 10^{-4}}.$$
  
  
'''(5)'''&nbsp; From question '''(3)''', it follows that for binary phase modulation, &nbsp;$10  \cdot \lg \ E_{\rm B}/N_{0} \approx 12 \ \rm dB$&nbsp; must be satisfied for &nbsp;$p_{\rm BPSK} \approx 10^{-8}$&nbsp; to be possible.
+
'''(5)'''&nbsp; From question&nbsp; '''(3)''',&nbsp; it follows that for binary phase modulation,&nbsp; &nbsp;$10  \cdot \lg \ E_{\rm B}/N_{0} \approx 12 \ \rm dB$&nbsp; must be satisfied for &nbsp;$p_{\rm BPSK} \approx 10^{-8}$&nbsp; to be possible.
*However, the given equations also show that the ASK curve is &nbsp;$3 \ \rm dB$ $($exactly $3.01 \ \rm dB)$&nbsp; to the right of the BPSK curve.
+
*However,&nbsp; the given equations also show that the ASK curve is &nbsp;$3 \ \rm dB$ $($exactly $3.01 \ \rm dB)$&nbsp; to the right of the BPSK curve.
 
*It follows that:
 
*It follows that:
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}(E_{\rm B}/N_{\rm 0})_{\rm min}\hspace{0.1cm}\underline {\approx 15\,\,{\rm dB}} \hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg}\hspace{0.1cm}(E_{\rm B}/N_{\rm 0})_{\rm min}\hspace{0.1cm}\underline {\approx 15\,\,{\rm dB}} \hspace{0.05cm}.$$

Latest revision as of 14:12, 6 May 2022

Bit error probabilities  (ASK and BPSK)

The bit error probabilities of  "Amplitude Shift Keying"  $\rm (ASK)$  and  "Binary Shift Keying"  $\rm (BPSK)$  modulation are often given by the following two equations:

$$p_{\rm ASK} = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$

These equations are evaluated in the attached table.  The following applies:

  • $E_{\rm B}$  indicates the average energy per bit.
  • $N_{0}$  is the noise power density.
  • There is a fixed relationship between the error functions  ${\rm Q}(x)$  and  ${\rm erfc}(x)$. 


It should be noted that these equations do not apply in general,  but only under certain idealized conditions.  These conditions are to be worked out in this exercise.



Notes:


Questions

1

What is the relationship between  ${\rm Q}(x)$  and  ${\rm erfc}(x)$?

 ${\rm Q}(x)= 2 \cdot{\rm erfc}(x)$,
 ${\rm Q}(x)= 0.5 \cdot{\rm erfc}(x)/\sqrt{2})$,
 ${\rm erfc}(x)= 0.5 \cdot{\rm Q}(x)/\sqrt{2})$.

2

When do the given equations for the error probability apply?

They apply only to the AWGN channel.
They apply only to the matched filter receiver  (or variants).
The equations take into account intersymbol interfering.
The equations apply only to rectangular signals.

3

What are the error probabilities for  $10 \cdot \lg \ E_{\rm B}/N_{0} = 12\, \rm dB$?

$ p_{\rm ASK} \ = \ $

$\ \cdot 10^{-4}$
$ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-8}$

4

What are the error probabilities for  $E_{\rm B}/N_{0} = 8$?

$ p_{\rm ASK} \ = \ $

$\ \cdot 10^{-2}$
$ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-4}$

5

The error probability should not exceed  $10^{-8}$.  What is the required  $10 \cdot \lg \ E_{\rm B}/N_{0}$  for ASK?

$(E_{\rm B}/N_{0})_{\rm min} \ = \ $

$\ \rm dB $


Solution

(1)  It is already obvious from the equations on the information page that  solution 2  is correct.  The defining equations are:

$$\rm Q ({\it x}) = \ \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm},$$
$$\rm erfc ({\it x}) = \ \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$
  • By simple substitutions,  the above relationship can be easily proved:
$${\rm Q} ( x) = 1/2 \cdot {\rm erfc} (x/\sqrt{2}) \hspace{0.05cm}.$$


(2)  The  first two solutions  are correct:

  • The equations are valid only for the AWGN channel and for an optimal binary receiver,  for example,  according to the matched filter approach.
  • Intersymbol interfering  – caused by the channel or the receiver filter – is not covered by this.
  • The exact transmission pulse shaping,  on the other hand,  does not matter as long as the receiver filter  $H_{\rm E}(f)$  is matched to the transmission spectrum.  Rather:
  • Two different transmission pulse shapers  $H_{\rm S}(f)$  lead to exactly the same error probability if they have the same energy per bit.


(3)  The results can be read directly from the table:

$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.343 \cdot 10^{-4}},$$
$$p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.901 \cdot 10^{-8}}.$$


(4)  With  $E_{\rm B}/N_{0} = 8\ \Rightarrow \ 10 \cdot \lg \ E_{\rm B}/N_{0} \approx 9 \ \rm dB$,  the following error probabilities are obtained:

$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.241 \cdot 10^{-2}}$$
$$p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.336 \cdot 10^{-4}}.$$


(5)  From question  (3),  it follows that for binary phase modulation,   $10 \cdot \lg \ E_{\rm B}/N_{0} \approx 12 \ \rm dB$  must be satisfied for  $p_{\rm BPSK} \approx 10^{-8}$  to be possible.

  • However,  the given equations also show that the ASK curve is  $3 \ \rm dB$ $($exactly $3.01 \ \rm dB)$  to the right of the BPSK curve.
  • It follows that:
$$10 \cdot {\rm lg}\hspace{0.1cm}(E_{\rm B}/N_{\rm 0})_{\rm min}\hspace{0.1cm}\underline {\approx 15\,\,{\rm dB}} \hspace{0.05cm}.$$