Difference between revisions of "Aufgaben:Exercise 1.09: BPSK and 4-QAM"

From LNTwww
Line 4: Line 4:
  
 
[[File:P_ID1682__Dig_A_4_2.png|right|frame|Phase diagrams of BPSK and 4-QAM]]
 
[[File:P_ID1682__Dig_A_4_2.png|right|frame|Phase diagrams of BPSK and 4-QAM]]
The diagram shows schematically the phase diagrams of the ''binary phase modulation''  (abbreviated '''BPSK''') and the ''quadrature amplitude modulation''  (called '''4–QAM''').  
+
The diagram shows schematically the phase diagrams of the  "binary phase modulation"  $($abbreviated $\rm BPSK)$  and the  "quadrature amplitude modulation"  $($called  $\rm 4–QAM)$.  
*The latter can be described by two BPSK systems with cosine and minus-sine carriers, where for each of the subcomponents the transmission amplitude is reduced by a factor of  $\sqrt{2}$  compared to BPSK.
+
*The latter can be described by two BPSK systems with cosine and minus-sine carriers,  where for each of the subcomponents the transmission amplitude is reduced by a factor of  $\sqrt{2}$  compared to BPSK.
 +
 
 
*The envelope of the total signal  $s(t)$  is thus also constant equal to  $s_{0}$.
 
*The envelope of the total signal  $s(t)$  is thus also constant equal to  $s_{0}$.
 +
 
*The error probability depending on the quotient  $E_{\rm B}/N_{0}$  is the same for BPSK and 4–QAM:
 
*The error probability depending on the quotient  $E_{\rm B}/N_{0}$  is the same for BPSK and 4–QAM:
 
:$$p_{\rm B}  = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right
 
:$$p_{\rm B}  = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right
 
  )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$
 
  )  = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$
However, the error probability of the BPSK system can also be expressed in the form
+
 
 +
However,  the error probability of the BPSK system can also be expressed in the form
 
:$$p_{\rm B,\hspace{0.04cm}BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right
 
:$$p_{\rm B,\hspace{0.04cm}BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right
 
  )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{T_{\rm B}}}$$
 
  )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{T_{\rm B}}}$$
Correspondingly, for the 4-QAM system:
+
Correspondingly,  for the 4-QAM system:
 
:$$p_{\rm B,\hspace{0.04cm}QAM} = {\rm Q}\left ( \frac{s_0/\sqrt{2}}{\sigma_d } \right
 
:$$p_{\rm B,\hspace{0.04cm}QAM} = {\rm Q}\left ( \frac{s_0/\sqrt{2}}{\sigma_d } \right
 
  )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm
 
  )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm
Line 19: Line 22:
  
 
The equations are valid only under the condition of exact phase synchronization:  
 
The equations are valid only under the condition of exact phase synchronization:  
*If there is a phase offset  $\Delta\phi_{\rm T}$  between the transmitted and received carrier signals, the error probability increases significantly, with BPSK and QAM systems being degraded differently.
+
*If there is a phase offset  $\Delta\phi_{\rm T}$  between the transmitted and received carrier signals,  the error probability increases significantly,  with BPSK and QAM systems being degraded differently.
*In the phase diagram, the phase offset is noticeable by a rotation of the point clouds. In the diagram, the centers of the point clouds for  $\Delta\phi_{\rm T} = 15^\circ$  are marked by yellow crosses, while the red circles indicate the centers for  $\Delta\phi_{\rm T} = 0$. 
+
 
 +
*In the phase diagram,  the phase offset is noticeable by a rotation of the point clouds.   
  
 +
*In the diagram,  the centers of the point clouds for  $\Delta\phi_{\rm T} = 15^\circ$  are marked by yellow crosses,  while the red circles indicate the centers for  $\Delta\phi_{\rm T} = 0$. 
  
 $E_{\rm B}/N_{0} = 8$ always holds, so the error probabilities of BPSK and QAM in the best case (without phase shift) are respectively as follows    ⇒    [[Aufgaben:Exercise_1.08Z:_BPSK_Error_Probability|Exercise 1.8Z]]:
+
 
 +
 $E_{\rm B}/N_{0} = 8$ always holds,  so the error probabilities of BPSK and QAM in the best case  (without phase shift)  are as follows    ⇒    [[Aufgaben:Exercise_1.08Z:_BPSK_Error_Probability|Exercise 1.8Z]]:
 
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  
''Further remarks:''
+
<u>Further remarks:</u>
*If we denote the distance of the BPSK useful samples from the (vertical) decision threshold by &nbsp;$s_{0}$, we get &nbsp;$\sigma_{d} = s_{0}/4$ for the noise rms value. The lighter circles in the diagram mark the contour lines with radius &nbsp;$2\cdot \sigma_{d}$&nbsp; and &nbsp;$3\cdot \sigma_{d}$&nbsp; of the Gaussian 2D PDF.
+
*If we denote the distance of the BPSK useful samples&nbsp; (without noise)&nbsp; from the&nbsp; (vertical)&nbsp; decision threshold by &nbsp;$s_{0}$,&nbsp; we get &nbsp;$\sigma_{d} = s_{0}/4$&nbsp; for the noise rms value.&nbsp; The lighter circles in the diagram mark the contour lines with radius &nbsp;$2\cdot \sigma_{d}$&nbsp; and &nbsp;$3\cdot \sigma_{d}$&nbsp; of the two-dimensionl Gaussian PDF.
 
 
*For the 4-QAM, compared to the BPSK, the distances of the useful samples drawn in red from the now two decision thresholds are each smaller by a factor of &nbsp;$\sqrt{2}$,&nbsp; but it also results in a noise rms value &nbsp;$\sigma_{d}$ smaller by the same factor.
 
  
 +
*For the 4-QAM,&nbsp; compared to the BPSK,&nbsp; the distances of the noise-free samples drawn in red from the now two decision thresholds are each smaller by a factor of &nbsp;$\sqrt{2}$,&nbsp; but it also results in a noise rms value &nbsp;$\sigma_{d}$noiseless smaller by the same factor.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
  
''Notes:''
+
*Reference is made in particular to the section&nbsp; [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Phase_offset_between_transmitter_and_receiver|"Phase offset between transmitter and receiver"]].  
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|Linear Digital Modulation - Coherent Demodulation]].
 
*Reference is made in particular to the section&nbsp; [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Phase_offset_between_transmitter_and_receiver|Phase offset between transmitter and receiver]].  
 
 
   
 
   
*You can determine the values of the Q function with the applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]].&nbsp;  
+
*You can determine the values of the Q&ndash;function with the HTML5/JavaScript applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].&nbsp;  
  
  
Line 60: Line 65:
 
$p_\text{B, 4-QAM} \ = \ $ { 0.117 3% } $\ \%$
 
$p_\text{B, 4-QAM} \ = \ $ { 0.117 3% } $\ \%$
  
{What is the error probability for 4-QAM with &nbsp;$\Delta\phi_{\rm T} = 45^\circ$?
+
{What is the bit error probability for 4-QAM with &nbsp;$\Delta\phi_{\rm T} = 45^\circ$?
 
|type="{}"}
 
|type="{}"}
 
$p_\text{B, 4-QAM} \ = \ $ { 25 3% } $\ \%$
 
$p_\text{B, 4-QAM} \ = \ $ { 25 3% } $\ \%$

Revision as of 16:43, 6 May 2022

Phase diagrams of BPSK and 4-QAM

The diagram shows schematically the phase diagrams of the  "binary phase modulation"  $($abbreviated $\rm BPSK)$  and the  "quadrature amplitude modulation"  $($called  $\rm 4–QAM)$.

  • The latter can be described by two BPSK systems with cosine and minus-sine carriers,  where for each of the subcomponents the transmission amplitude is reduced by a factor of  $\sqrt{2}$  compared to BPSK.
  • The envelope of the total signal  $s(t)$  is thus also constant equal to  $s_{0}$.
  • The error probability depending on the quotient  $E_{\rm B}/N_{0}$  is the same for BPSK and 4–QAM:
$$p_{\rm B} = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$

However,  the error probability of the BPSK system can also be expressed in the form

$$p_{\rm B,\hspace{0.04cm}BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{T_{\rm B}}}$$

Correspondingly,  for the 4-QAM system:

$$p_{\rm B,\hspace{0.04cm}QAM} = {\rm Q}\left ( \frac{s_0/\sqrt{2}}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$

The equations are valid only under the condition of exact phase synchronization:

  • If there is a phase offset  $\Delta\phi_{\rm T}$  between the transmitted and received carrier signals,  the error probability increases significantly,  with BPSK and QAM systems being degraded differently.
  • In the phase diagram,  the phase offset is noticeable by a rotation of the point clouds. 
  • In the diagram,  the centers of the point clouds for  $\Delta\phi_{\rm T} = 15^\circ$  are marked by yellow crosses,  while the red circles indicate the centers for  $\Delta\phi_{\rm T} = 0$. 


 $E_{\rm B}/N_{0} = 8$ always holds,  so the error probabilities of BPSK and QAM in the best case  (without phase shift)  are as follows   ⇒   Exercise 1.8Z:

$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$

Further remarks:

  • If we denote the distance of the BPSK useful samples  (without noise)  from the  (vertical)  decision threshold by  $s_{0}$,  we get  $\sigma_{d} = s_{0}/4$  for the noise rms value.  The lighter circles in the diagram mark the contour lines with radius  $2\cdot \sigma_{d}$  and  $3\cdot \sigma_{d}$  of the two-dimensionl Gaussian PDF.
  • For the 4-QAM,  compared to the BPSK,  the distances of the noise-free samples drawn in red from the now two decision thresholds are each smaller by a factor of  $\sqrt{2}$,  but it also results in a noise rms value  $\sigma_{d}$noiseless smaller by the same factor.



Notes:


Questions

1

What is the bit error probability for BPSK with  $\Delta\phi_{\rm T} = 15^\circ$?

$p_\text{B, BPSK} \ = \ $

$\ \% $

2

What is the bit error probability for BPSK with  $\Delta\phi_{\rm T} = 45^\circ$?

$p_\text{B, BPSK} \ = \ $

$\ \%$

3

What is the bit error probability for 4-QAM with  $\Delta\phi_{\rm T} = 15^\circ$?

$p_\text{B, 4-QAM} \ = \ $

$\ \%$

4

What is the bit error probability for 4-QAM with  $\Delta\phi_{\rm T} = 45^\circ$?

$p_\text{B, 4-QAM} \ = \ $

$\ \%$


Solution

(1)  Rotating the phase diagram by $\Delta\phi_{\rm T} = 15^\circ$ decreases the distance of the useful samples from the threshold by $\cos(15^\circ) \approx 0.966$. It follows that:

$$p_{\rm B} = {\rm Q}(0.966 \cdot 4) \approx {\rm Q}(3.86)= 0.57 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.0057\, \%}.$$


(2)  Analogous to subtask (1), $\cos(45^\circ) \approx 0.707$ is obtained:

$$p_{\rm B} = {\rm Q}(0.707 \cdot 4) \approx {\rm Q}(2.83)\hspace{0.1cm}\underline {= 0.233 \, \%}.$$


(3)  For 4-QAM, clockwise rotation by $\Delta\phi_{\rm T}$ increases the distance

  • from the horizontal threshold (decision of the first bit) equals $s_{0} \cdot \cos(45^\circ + \Delta\phi_{\rm T})$, i.e., smaller than without phase shift,
  • from the vertical threshold (decision of the second bit) equal to $s_{0} \cdot \cos(45^\circ - \Delta\phi_{\rm T})$, thus larger than without phase shift.


Thus, we obtain for the average error probability:

$$p_{\rm B} = {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ+{\rm \Delta} \phi_{\rm T}) \cdot s_0}{0.25 \cdot s_0 / \sqrt{2}} \right ) + {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ-{\rm \Delta} \phi_{\rm T}) \cdot s_0}{0.25 \cdot s_0 / \sqrt{2}}\right ).$$
  • This already takes into account the smaller noise rms value of the 4-QAM.
  • As a check, we calculate the error probability for $\Delta\phi_{\rm T} = 0$:
$$p_{\rm B} = {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +{1}/{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {\rm Q}(4) = 0.317 \cdot 10^{-4}.$$

On the other hand, we obtain with $\Delta\phi_{\rm T} = 15^\circ$:

$$p_{\rm B} = {1}/{2} \cdot {\rm Q}\left ( \frac{\cos(60^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +{1}/{2} \cdot {\rm Q}\left ( \frac{\cos(30^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {1}/{2} \cdot \left [{\rm Q}(2.83)+ {\rm Q}(4.90)\right]$$
$$\Rightarrow \hspace{0.3cm} p_{\rm B} \approx \frac{1}{2} \cdot \left [0.233 \cdot 10^{-2}+ 0.479 \cdot 10^{-6}\right] \hspace{0.1cm}\underline {= 0.117 \, \%}.$$


(4)  With a phase shift of $45^\circ$, one obtains from the equation generally derived above:

$$p_{\rm B} ={1}/{2} \cdot {\rm Q}\left ( \frac{\cos(90^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +{1}/{2} \cdot {\rm Q}\left ( \frac{\cos(0^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {1}/{2} \cdot \left [{\rm Q}(0)+ {\rm Q}(5.66)\right] \approx 0.25\hspace{0.1cm}\underline {= 25 \, \%}.$$

That is:

  • The error rate for the first bit is $50\%$.
  • In contrast, the second bit is decided almost error-free $(\approx 10^{–8})$.
  • Overall, this results in a mean error probability of approx. $25\%$.