Difference between revisions of "Aufgaben:Exercise 1.1: Basic Transmission Pulses"

From LNTwww
 
(26 intermediate revisions by 7 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Basisband-Systemkomponenten
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System
 
}}
 
}}
  
  
[[File:P_ID1256__Dig_A_1_1.png|right|frame|Sendegrundimpulse]]
+
[[File:P_ID1256__Dig_A_1_1.png|right|frame|Considered basic transmission pulses]]
Wir untersuchen in dieser Aufgabe die zwei in der Grafik dargestellten Sendesignale $s_{\rm R}(t)$ und $s_{\rm C}(t)$ mit Rechteck– bzw. cos2–Sendegrundimpuls. Insbesondere sollen für die jeweiligen Impulse $g_s(t)$ folgende Kenngrößen berechnet werden:
+
In this exercise,  we examine the two transmitted signals  $s_{\rm R}(t)$  and  $s_{\rm C}(t)$  with rectangular resp. cosine–square basic transmission pulse,  shown in the diagram.  
*die äquivalente Impulsdauer von $g_s(t)$:
+
 
 +
In particular,  the following characteristics are to be calculated for the respective basic transmission pulses  $g_s(t)$: 
 +
*the equivalent pulse duration of  $g_s(t)$:
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
  d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
 
  d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
*die Energie des Sendegrundimpulses $g_s(t)$:
+
*the energy of  $g_s(t)$:
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t \hspace{0.05cm},$$
 
  d}t \hspace{0.05cm},$$
*die Leistung des Sendesignals $s(t)$:
+
*the power of the transmitted signal  $s(t)$:
 
:$$P_{\rm S} =  \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm
 
:$$P_{\rm S} =  \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm
 
  d}t \hspace{0.05cm}.$$
 
  d}t \hspace{0.05cm}.$$
  
  
Gehen Sie bei Ihren Berechnungen stets davon aus, dass die beiden möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind und dass der Abstand zwischen benachbarten Symbolen $T = 1 \ \rm  μs$ beträgt. Dies entspricht einer Bitrate von $R = 1 \ \rm Mbit/s$.  
+
Always assume in your calculations that the two possible amplitude coefficients are equally likely and that the distance between adjacent symbols is  $T = 1 \ \rm  µ s$.  This corresponds to a bit rate of  $R = 1 \ \rm Mbit/s$.  
  
*Der (positive) Maximalwert des Sendesignals ist in beiden Fällen gleich
+
*The  (positive)  maximum value of the transmitted signal is the same in both cases:
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
*Unter der Annahme, dass der Sender mit einem Widerstand von 50 Ω abgeschlossen ist, entspricht dies dem folgenden Spannungswert:
+
*Assuming that the transmitter is terminated with a  $50\ \rm  Ω$  resistor,  this corresponds to the following voltage value:
s_0 =  \sqrt{0.5\, {\rm W}} \hspace{0.05cm}.
+
:$$s_0^2 0.5\, {\rm W} \cdot 50\, {\rm \Omega} = 25\, {\rm V}^2 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} s_0 =5\, {\rm V} \hspace{0.05cm}.$$
 +
 
 +
 
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems|Systemkomponenten eines Basisbandübertragungssystems]].
+
Notes:  
*Bezug genommen wird insbesondere auf den Abschnitt[[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#Kenngr.C3.B6.C3.9Fen_des_digitalen_Senders|Kenngrößen des digitalen Senders]].
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System|"System Components of a Baseband Transmission System"]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Characteristics_of_the_digital_transmitter|"Characteristics of the digital transmitter"]].  
*Gegeben ist das folgende unbestimmte Integral:
+
*Given is the following indefinite integral:
 
:$$\int \cos^4(a  x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a  x)+ \frac{1}{32a} \cdot \sin(4 a
 
:$$\int \cos^4(a  x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a  x)+ \frac{1}{32a} \cdot \sin(4 a
 
  x)\hspace{0.05cm}.$$
 
  x)\hspace{0.05cm}.$$
Line 35: Line 39:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
Handelt es sich bei $s_{\rm R}(t)$ und $s_{\rm C}(t)$ um unipolare oder bipolare Signale?
+
Are $s_{\rm R}(t)$ and $s_{\rm C}(t)$ unipolar or bipolar signals?
|type="[]"}
+
|type="()"}
- $s_{\rm R}(t)$ ist ein bipolares Signal.
+
- $s_{\rm R}(t)$&nbsp; is a bipolar signal and &nbsp;$s_{\rm C}(t)$&nbsp; is a unipolar signal.
+ $s_{\rm c}(t)$ ist ein bipolares Signal.
+
+ $s_{\rm C}(t)$&nbsp; is a bipolar signal and &nbsp;$s_{\rm R}(t)$&nbsp; is a unipolar signal.
  
  
{Wie groß ist die äquivalente Impulsdauer $\Delta t_{\rm S}$, normiert auf die Symboldauer $T$?
+
{What is the equivalent pulse duration &nbsp;$\Delta t_{\rm S}$,&nbsp; normalized to the symbol duration &nbsp;$T$?
 
|type="{}"}
 
|type="{}"}
$\text{Beim Signal}\ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 1 3% }  
+
$\text{For the signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 1 3% }  
$\text{beim Signal}\ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 0.5 3% }  
+
$\text{For the signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 0.5 3% }  
  
{Wie groß ist die Energie des rechteckförmigen Sendegrundimpulses??
+
{What is the energy of the rectangular basic transmission pulse &nbsp;$g_s(t)$?
 
|type="{}"}
 
|type="{}"}
 
$E_g \ = \ $ { 0.5 } $\ \cdot 10^{-6}\ \rm Ws$  
 
$E_g \ = \ $ { 0.5 } $\ \cdot 10^{-6}\ \rm Ws$  
  
{Wie groß ist die Leistung des rechteckförmigen Sendesignals $s_{\rm R}(t)$?
+
{What is the power of the rectangular transmitted signal &nbsp;$s_{\rm R}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.25 3% } $\ \rm W$  
 
$P_{\rm S} \ = \ $ { 0.25 3% } $\ \rm W$  
  
{Wie groß ist die Energie des $\cos^2–Sendegrundimpulses?
+
{What is the energy of the cosine&ndash;square basic transmission pulse &nbsp;$g_s(t)$?
 
|type="{}"}
 
|type="{}"}
 
$E_g \ = \ $ { 0.1875 3% } $\ \cdot 10^{-6}\ \rm Ws$  
 
$E_g \ = \ $ { 0.1875 3% } $\ \cdot 10^{-6}\ \rm Ws$  
  
{Wie groß ist die Leistung des rechteckförmigen Sendesignals $s_{\rm C}(t)$?
+
{What is the power of the transmitted signal &nbsp;$s_{\rm C}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.1875 3% } $\ \rm W$  
 
$P_{\rm S} \ = \ $ { 0.1875 3% } $\ \rm W$  
Line 68: Line 72:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der Gesamtbandbreite 24.8 MHz und dem Kanalabstand 200 kHz folgt $K_{\rm F}\hspace{0.15cm}\underline{ = 124}$.
+
'''(1)'''&nbsp; <u>Solution 2</u>&nbsp; is correct:
 +
*In both cases,&nbsp; the transmitted signal can be represented in the following form:
 +
:$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
 +
*For the signal $s_{\rm R}(t)$,&nbsp; the amplitude coefficients&nbsp; $a_ν$&nbsp; are either&nbsp; $0$&nbsp; or&nbsp; $1$.&nbsp; Thus,&nbsp; a unipolar signal is present.
 +
*In contrast,&nbsp; for the bipolar signal $s_{\rm R}(t)$ &nbsp; &rArr;  &nbsp;  $a_ν ∈ \{–1, +1\}$ holds.  
  
  
'''(2)'''&nbsp; Die Mittenfrequenz des ersten Kanals liegt bei 890.2 MHz. DerKanal „RFCH 100” liegt um 99 · 200 kHz = 19.8 MHz höher:
+
'''(2)'''&nbsp; The signal&nbsp; $s_{\rm R}(t)$&nbsp; is NRZ&nbsp; ("non-return-to-zero")&nbsp; rectangular.
:$$f_{\rm M}= 890.2 \ \rm  MHz + 19.8 \ \rm  MHz\hspace{0.15cm}\underline{ = 910 \ \rm  MHz}.$$
+
*Accordingly,&nbsp; both the absolute pulse duration&nbsp; $T_{\rm S}$&nbsp; and the equivalent pulse duration&nbsp; $\Delta t_{\rm S}$&nbsp; are equal to the symbol duration&nbsp; $T$:
 +
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
 +
*The basic transmission pulse for the signal&nbsp; $s_{\rm C}(t)$&nbsp; is:
 +
:$$g_s(t)  =  \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T})  \\
 +
0 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{for}}
 +
\\    \\ \end{array}\begin{array}{*{20}c}
 +
-T/2 \le t \le +T/2 \hspace{0.05cm}, \\
 +
{\rm else} \hspace{0.05cm}.  \\
 +
\end{array}$$
 +
*From the diagram on the information section,&nbsp; we can see that the following values apply to the cosine&ndash;square pulse:
 +
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; For the energy of the rectangular pulse holds:
 +
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 +
d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm &micro; s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm
 +
Ws}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; For a bipolar rectangular signal,&nbsp; the following would apply:
 +
:$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s =  s_0^2 \cdot
 +
\lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm
 +
d}t = s_0^2 \hspace{0.05cm}.$$
 +
*However,&nbsp; since the signal&nbsp; $s_{\rm R}(t)$ is&nbsp; unipolar here,&nbsp; in half the time $s_{\rm R}(t)= 0$.&nbsp; Thus,&nbsp; we get:
 +
:$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm
 +
  W}}  \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; For the energy of the cosine&ndash;square pulse holds:
 +
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 +
d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm
 +
d}t \hspace{0.05cm}.$$
 +
*Here,&nbsp; the formula derived in subtask&nbsp; '''(3)'''&nbsp; and the symmetry of&nbsp; $g_s(t)$&nbsp; about time&nbsp; $t = 0$&nbsp; are considered.
 +
*The integral is given in the task description,&nbsp; where $a = π/T$&nbsp; is to be set:
 +
:$$E_g =    2  \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot
 +
\sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
 +
*The lower bound&nbsp; $t = 0$&nbsp; always yields the result&nbsp; $0$. &nbsp; With respect to the upper bound,&nbsp; only the first term yields a result different from&nbsp; $0$.&nbsp; Thus:
 +
:$$E_g =    2  \cdot s_0^2 \cdot  \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm
 +
  Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm
 +
  Ws}}\hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Um die Überlegungen zur Teilaufgabe (2) nutzen zu können, transformieren wir die Aufgabenstellung in den Uplink: Der gleiche Kanal mit der Kennung $k_{\rm F}$, der im Downlink die Frequenz 940 MHz nutzt, liegt im Uplink bei 895 MHz. Damit gilt:
 
:$$k_{\rm F} = 1 + \frac {895 \,\,{\rm MHz } - 890.2 \,\,{\rm MHz } }{0.2 \,\,{\rm MHz }} \hspace{0.15cm}\underline {= 25}.$$
 
  
'''(4)'''&nbsp; In einem TDMA–Rahmen der Dauer 4.62 Millisekunden können $K_{\rm T}\hspace{0.15cm}\underline= 8}$ Zeitschlitze mit jeweiliger Dauer $T = 577 \ \rm μs$ untergebracht werden. ''Anmerkung:'' Bei GSM wird tatsächlich $K_{\rm T} = 8$ verwendet.
+
'''(6)'''&nbsp; The following relationship holds for the bipolar signal $s_{\rm C}(t)$:
 +
:$$P_{\rm S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm
 +
  Ws}}{10^{-6}\, {\rm s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm W}}  \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Mit den Ergebnissen der Teilaufgaben (1) und (4) erhält man:
 
:$$K = K_{\rm F} \cdot K_{\rm T} = 124 \cdot 8 \hspace{0.15cm}\underline {= 992}$$
 
  
'''(6)'''&nbsp; Während der Zeit $T = 577 \ \rm μs$ müssen 156 Bit übertragen werden. Damit stehen für jedes Bit die Zeit $T_{\rm B} = 3.699 \ \rm μs$ zur Verfügung. Daraus ergibt sich die (Brutto&ndash;)Bitrate
 
:$$R_{\rm Brutto} = \frac {1 }{T_{\rm B}}\hspace{0.15cm}\underline {\approx 270 \,\,{\rm kbit/s }}.$$
 
Diese Brutto–Bitrate beinhaltet neben den das Sprachsignal beschreibenden Datensymbolen auch die Trainigssequenz zur Kanalschätzung und die Redundanz für die Kanalcodierung. Die Netto–Bitrate beträgt beim GSM–System für jeden der acht Benutzer nur etwa 13 kbit/s.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.1 Basisband-Systemkomponenten^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.1 Baseband System Components^]]

Latest revision as of 14:13, 9 May 2022


Considered basic transmission pulses

In this exercise,  we examine the two transmitted signals  $s_{\rm R}(t)$  and  $s_{\rm C}(t)$  with rectangular resp. cosine–square basic transmission pulse,  shown in the diagram.

In particular,  the following characteristics are to be calculated for the respective basic transmission pulses  $g_s(t)$: 

  • the equivalent pulse duration of  $g_s(t)$:
$$\Delta t_{\rm S} = \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
  • the energy of  $g_s(t)$:
$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t \hspace{0.05cm},$$
  • the power of the transmitted signal  $s(t)$:
$$P_{\rm S} = \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm d}t \hspace{0.05cm}.$$


Always assume in your calculations that the two possible amplitude coefficients are equally likely and that the distance between adjacent symbols is  $T = 1 \ \rm µ s$.  This corresponds to a bit rate of  $R = 1 \ \rm Mbit/s$.

  • The  (positive)  maximum value of the transmitted signal is the same in both cases:
$$s_0 = \sqrt{0.5\, {\rm W}} \hspace{0.05cm}.$$
  • Assuming that the transmitter is terminated with a  $50\ \rm Ω$  resistor,  this corresponds to the following voltage value:
$$s_0^2 = 0.5\, {\rm W} \cdot 50\, {\rm \Omega} = 25\, {\rm V}^2 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} s_0 =5\, {\rm V} \hspace{0.05cm}.$$



Notes:

$$\int \cos^4(a x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a x)+ \frac{1}{32a} \cdot \sin(4 a x)\hspace{0.05cm}.$$


Questions

1

Are $s_{\rm R}(t)$ and $s_{\rm C}(t)$ unipolar or bipolar signals?

$s_{\rm R}(t)$  is a bipolar signal and  $s_{\rm C}(t)$  is a unipolar signal.
$s_{\rm C}(t)$  is a bipolar signal and  $s_{\rm R}(t)$  is a unipolar signal.

2

What is the equivalent pulse duration  $\Delta t_{\rm S}$,  normalized to the symbol duration  $T$?

$\text{For the signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $

$\text{For the signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $

3

What is the energy of the rectangular basic transmission pulse  $g_s(t)$?

$E_g \ = \ $

$\ \cdot 10^{-6}\ \rm Ws$

4

What is the power of the rectangular transmitted signal  $s_{\rm R}(t)$?

$P_{\rm S} \ = \ $

$\ \rm W$

5

What is the energy of the cosine–square basic transmission pulse  $g_s(t)$?

$E_g \ = \ $

$\ \cdot 10^{-6}\ \rm Ws$

6

What is the power of the transmitted signal  $s_{\rm C}(t)$?

$P_{\rm S} \ = \ $

$\ \rm W$


Solution

(1)  Solution 2  is correct:

  • In both cases,  the transmitted signal can be represented in the following form:
$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
  • For the signal $s_{\rm R}(t)$,  the amplitude coefficients  $a_ν$  are either  $0$  or  $1$.  Thus,  a unipolar signal is present.
  • In contrast,  for the bipolar signal $s_{\rm R}(t)$   ⇒   $a_ν ∈ \{–1, +1\}$ holds.


(2)  The signal  $s_{\rm R}(t)$  is NRZ  ("non-return-to-zero")  rectangular.

  • Accordingly,  both the absolute pulse duration  $T_{\rm S}$  and the equivalent pulse duration  $\Delta t_{\rm S}$  are equal to the symbol duration  $T$:
$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
  • The basic transmission pulse for the signal  $s_{\rm C}(t)$  is:
$$g_s(t) = \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{20}c} -T/2 \le t \le +T/2 \hspace{0.05cm}, \\ {\rm else} \hspace{0.05cm}. \\ \end{array}$$
  • From the diagram on the information section,  we can see that the following values apply to the cosine–square pulse:
$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$


(3)  For the energy of the rectangular pulse holds:

$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm µ s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.$$


(4)  For a bipolar rectangular signal,  the following would apply:

$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s = s_0^2 \cdot \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm d}t = s_0^2 \hspace{0.05cm}.$$
  • However,  since the signal  $s_{\rm R}(t)$ is  unipolar here,  in half the time $s_{\rm R}(t)= 0$.  Thus,  we get:
$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm W}} \hspace{0.05cm}.$$


(5)  For the energy of the cosine–square pulse holds:

$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm d}t \hspace{0.05cm}.$$
  • Here,  the formula derived in subtask  (3)  and the symmetry of  $g_s(t)$  about time  $t = 0$  are considered.
  • The integral is given in the task description,  where $a = π/T$  is to be set:
$$E_g = 2 \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot \sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
  • The lower bound  $t = 0$  always yields the result  $0$.   With respect to the upper bound,  only the first term yields a result different from  $0$.  Thus:
$$E_g = 2 \cdot s_0^2 \cdot \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.$$


(6)  The following relationship holds for the bipolar signal $s_{\rm C}(t)$:

$$P_{\rm S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm Ws}}{10^{-6}\, {\rm s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm W}} \hspace{0.05cm}.$$