Difference between revisions of "Aufgaben:Exercise 2.6: Modified MS43 Code"

From LNTwww
Line 60: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Statements 2 and 3</u> are correct:
+
'''(1)'''&nbsp; <u>Statements 2 and 3</u>&nbsp;  are correct:
*The first statement, on the other hand, is not true: For example, the AWGN (''Additives Weißes Gaußsches Rauschen'') channel with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code. The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a "telephone channel".
+
*The first statement,&nbsp; on the other hand,&nbsp; is not true:&nbsp; For example,&nbsp; the AWGN ("Additive White Gaussian Noise")&nbsp; channel with a 4B3T code results in a much larger symbol error probability due to the ternary decision compared to the redundancy-free binary code.&nbsp;
*The $25 \%$ smaller step rate $(1/T)$ of the 4B3T code compared to the redundancy-free binary code also accommodates the transmission characteristics of symmetrical copper lines (strong increase in attenuation with frequency). For a given line attenuation, a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.
+
 +
*The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a&nbsp; "telephone channel".
 +
 
 +
*The&nbsp; $25 \%$&nbsp; smaller baud rate&nbsp; $(1/T)$&nbsp; of the 4B3T code compared to the redundancy-free binary code also accommodates the transmission characteristics of symmetrical copper lines&nbsp; (strong increase in attenuation with frequency).&nbsp;
 +
 +
*For a given line attenuation,&nbsp; a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.
  
  
Line 68: Line 73:
 
'''(2)'''&nbsp;  The 4B3T coding results with the initial value ${\it\Sigma}_{0} = 0$:
 
'''(2)'''&nbsp;  The 4B3T coding results with the initial value ${\it\Sigma}_{0} = 0$:
  
*'''HHLL''' &nbsp; &rArr; &nbsp; $+ + + \hspace{0.2cm}({\it\Sigma}_{1} = 3)$,
+
*$\rm HHLL$ &nbsp; &rArr; &nbsp; $+ + + \hspace{0.2cm}({\it\Sigma}_{1} = 3)$,
*'''LHLL''' &nbsp; &rArr; &nbsp; $– + 0 \hspace{0.2cm}({\it\Sigma}_{2} = 3)$,
+
*$\rm LHLL$ &nbsp; &rArr; &nbsp; $– + 0 \hspace{0.2cm}({\it\Sigma}_{2} = 3)$,
*'''LHHL''' &nbsp; &rArr; &nbsp; $– – + \hspace{0.2cm}({\it\Sigma}_{3} = 2)$,
+
*$\rm LHHL$ &nbsp; &rArr; &nbsp; $– – + \hspace{0.2cm}({\it\Sigma}_{3} = 2)$,
*'''HLHL''' &nbsp; &rArr; &nbsp; $+ – – \hspace{0.2cm}({\it\Sigma}_{4} = 1)$.
+
*$\rm HLHL$ &nbsp; &rArr; &nbsp; $+ – – \hspace{0.2cm}({\it\Sigma}_{4} = 1)$.
  
Thus, the amplitude coefficient we are looking for is $a_{12} \ \underline{=  -\hspace{-0.05cm}1}$.
+
Thus,&nbsp; the amplitude coefficient we are looking for is&nbsp; $a_{12} \ \underline{=  -\hspace{-0.05cm}1}$.
  
  
'''(3)'''&nbsp; From the coloring of the code table, the Markov diagram can be obtained. From it, one can read the transition probabilities we are looking for:
+
'''(3)'''&nbsp; From the coloring of the code table,&nbsp; the Markov diagram can be obtained.&nbsp;
 +
*From it,&nbsp; one can read the transition probabilities we are looking for:
  
 
:$$ {\rm Pr}({\it \Sigma}_{l+1} = 0\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 0) = 6/16 \ \underline{= 0.375},$$
 
:$$ {\rm Pr}({\it \Sigma}_{l+1} = 0\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 0) = 6/16 \ \underline{= 0.375},$$
Line 83: Line 89:
  
  
'''(4)'''&nbsp; <u>Statements 2 and 3</u> are correct:
+
'''(4)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
*Statement 1 is false, recognizable by the asymmetries in the Markov diagram.
+
*Statement 1 is false,&nbsp; recognizable by the asymmetries in the Markov diagram.
*On the other hand, there are symmetries with respect to the states "$0$" and "$3$" as well as between "$1$" and "$2$".  
+
 
*In the following calculation, instead of $ {\rm Pr}({\it \Sigma}_{l} = 0$ we write $ {\rm Pr}(0)$ in a simplified way.  
+
*On the other hand,&nbsp; there are symmetries with respect to the states&nbsp; "$0$"&nbsp; and&nbsp; "$3$"&nbsp; as well as between&nbsp; "$1$"&nbsp; and&nbsp; "$2$".
*Taking advantage of the property ${\Pr}(3) = {\Pr}(0)$ and ${\Pr}(2) = {\Pr}(1)$, we obtain from the Markov diagram:
+
 +
*In the following calculation,&nbsp; instead of&nbsp; $ {\rm Pr}({\it \Sigma}_{l} = 0)$&nbsp; we write $ {\rm Pr}(0)$&nbsp; in a simplified way.
 +
 +
*Taking advantage of the property&nbsp; ${\Pr}(3) = {\Pr}(0)$&nbsp; and&nbsp; ${\Pr}(2) = {\Pr}(1)$,&nbsp; we obtain from the Markov diagram:
 
:$${\rm Pr}(0)= {6}/{16} \cdot {\rm Pr}(0) +{4}/{16} \cdot {\rm Pr}(1)+ {1}/{16} \cdot {\rm Pr}(3)\hspace{0.15cm} \Rightarrow \hspace{0.15cm}{9}/{16} \cdot {\rm Pr}(0)= {4}/{16} \cdot {\rm Pr}(1)$$
 
:$${\rm Pr}(0)= {6}/{16} \cdot {\rm Pr}(0) +{4}/{16} \cdot {\rm Pr}(1)+ {1}/{16} \cdot {\rm Pr}(3)\hspace{0.15cm} \Rightarrow \hspace{0.15cm}{9}/{16} \cdot {\rm Pr}(0)= {4}/{16} \cdot {\rm Pr}(1)$$
From the further condition ${\Pr}(0) + {\Pr}(1) = 1/2$ it follows further:
+
*From the further condition&nbsp; ${\Pr}(0) + {\Pr}(1) = 1/2$&nbsp; it follows further:
 
:$${\rm Pr}(0)= {\rm Pr}(3)= {9}/{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= {4}/{26}\hspace{0.05cm}.$$
 
:$${\rm Pr}(0)= {\rm Pr}(3)= {9}/{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= {4}/{26}\hspace{0.05cm}.$$
This calculation is based on the "sum of incoming arrows in state $0$".  
+
:This calculation is based on the&nbsp; "sum of incoming arrows in state&nbsp; $0$".  
  
One could also give equations for the other three states, but they all give the same result:
+
One could also give equations for the other three states,&nbsp; but they all give the same result:
 
:$${\rm Pr}(1)  = \ {6}/{16} \cdot {\rm Pr}(0) + {6}/{16} \cdot {\rm Pr}(1)+ {6}/{16} \cdot {\rm Pr}(2)+{3}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$${\rm Pr}(1)  = \ {6}/{16} \cdot {\rm Pr}(0) + {6}/{16} \cdot {\rm Pr}(1)+ {6}/{16} \cdot {\rm Pr}(2)+{3}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$$ {\rm Pr}(2) = \ {3}/{16} \cdot {\rm Pr}(0) +{6}/{16} \cdot {\rm Pr}(1)+{6}/{16} \cdot {\rm Pr}(2)+{6}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$  
 
:$$ {\rm Pr}(2) = \ {3}/{16} \cdot {\rm Pr}(0) +{6}/{16} \cdot {\rm Pr}(1)+{6}/{16} \cdot {\rm Pr}(2)+{6}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$  

Revision as of 15:57, 19 May 2022


Code table of the MMS43 code Korrektur

For ISDN data transmission,  the  MMS43 code  ("Modified Monitored Sum 4B3T")  is used in Germany and Belgium on the so-called  $\rm {U_{K0}}$ interface,  which describes the transmission path between the exchange and home.  This is a 4B3T code with four code tables,  which are used for coding according to the running digital sum  (after  $l$ blocks):

$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.02cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu.$$

 ${\it \Sigma}_{0} = 0$  is used for initialization.

The colorings in the table mean:

  • If the running digital sum does not change  $({\it \Sigma}_{l+1} = {\it \Sigma}_{l})$,  a field is grayed out.
  • An increase  $({\it \Sigma}_{l+1} > {\it \Sigma}_{l})$  is highlighted in red,  a decrease  $({\it \Sigma}_{l+1} < {\it \Sigma}_{l})$  in blue.
  • The more intense the coloring,  the larger the change.


Notes:

  • The binary symbols are denoted by  $\rm L$  ("Low")  and  $\rm H$  ("High")  in this learning tutorial.  Often you can find the binary symbols  $\rm L$  and  $\rm 0$  $($instead of  $\rm H)$  in the literature.  Sometimes,  however,  $\rm L$  corresponds to our  $\rm H$  and  $\rm 0$  to   $\rm L$.
  • To avoid such confusion and to prevent the  $\rm 0$  from appearing in both alphabets  (binary and ternary)  - in addition with different meanings - we have used the nomenclature which admittedly takes some getting used to.  We are well aware that our nomenclature will also confuse some readers.


Questions

1

Why is a 4B3T code used for ISDN instead of the redundancy-free binary code?

4B3T is always better than the redundancy-free binary code.
The transmitted signal should be DC signal free because of  $H_{\rm K}(f=0) = 0$. 
A smaller baud rate allows longer cable length.

2

Code the binary sequence  $\rm HHLL\hspace{0.08cm} LHLL\hspace{0.08cm} LHHL\hspace{0.08cm} HLHL$  $($with  ${\it \Sigma}_{0} = 0)$ .
What is the amplitude coefficient of the third ternary symbol of the fourth block?

$a_{12} \ = \ $

3

Determine the Markov diagram for the transition from  ${\it \Sigma}_{l}$  to  ${\it \Sigma}_{l+1}$.  What are the transition probabilities?

$ {\rm Pr}({\it \Sigma}_{l+1} = 0\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 0) \ = \ $

$ {\rm Pr}({\it \Sigma}_{l+1} = 2\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 0) \ = \ $

$ {\rm Pr}({\it \Sigma}_{l+1} = 0\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 2) \ = \ $

4

What properties follow from the Markov diagram?

Equal probabilities:   ${\rm Pr}({\it \Sigma}_{l} = 0) = \text{...} = {\rm Pr}(\Sigma_{l} = 3)$.
  ${\rm Pr}({\it \Sigma}_{l} = 0) = {\rm Pr}({\it \Sigma}_{l} = 3)$   and   ${\rm Pr}({\it \Sigma}_{l} = 1) = {\rm Pr}({\it \Sigma}_{l} = 2)$  are valid.
The extreme values  $({\it \Sigma}_{l} = 0$  and  ${\it \Sigma}_{l} = 3)$  occur less frequently than the inner values  $({\it \Sigma}_{l} = 1$  and  ${\it \Sigma}_{l} = 2)$.


Solution

(1)  Statements 2 and 3  are correct:

  • The first statement,  on the other hand,  is not true:  For example,  the AWGN ("Additive White Gaussian Noise")  channel with a 4B3T code results in a much larger symbol error probability due to the ternary decision compared to the redundancy-free binary code. 
  • The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a  "telephone channel".
  • The  $25 \%$  smaller baud rate  $(1/T)$  of the 4B3T code compared to the redundancy-free binary code also accommodates the transmission characteristics of symmetrical copper lines  (strong increase in attenuation with frequency). 
  • For a given line attenuation,  a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.


Markov diagram for the MMS43 code

(2)  The 4B3T coding results with the initial value ${\it\Sigma}_{0} = 0$:

  • $\rm HHLL$   ⇒   $+ + + \hspace{0.2cm}({\it\Sigma}_{1} = 3)$,
  • $\rm LHLL$   ⇒   $– + 0 \hspace{0.2cm}({\it\Sigma}_{2} = 3)$,
  • $\rm LHHL$   ⇒   $– – + \hspace{0.2cm}({\it\Sigma}_{3} = 2)$,
  • $\rm HLHL$   ⇒   $+ – – \hspace{0.2cm}({\it\Sigma}_{4} = 1)$.

Thus,  the amplitude coefficient we are looking for is  $a_{12} \ \underline{= -\hspace{-0.05cm}1}$.


(3)  From the coloring of the code table,  the Markov diagram can be obtained. 

  • From it,  one can read the transition probabilities we are looking for:
$$ {\rm Pr}({\it \Sigma}_{l+1} = 0\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 0) = 6/16 \ \underline{= 0.375},$$
$$ {\rm Pr}({\it \Sigma}_{l+1} = 2\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 0) = 0)= 3/16 \ \underline{= 0.1875},$$
$$ {\rm Pr}({\it \Sigma}_{l+1} = 0\hspace{0.05cm} |\hspace{0.05cm}{\it \Sigma}_{l} = 2) \ \underline{= 0}.$$


(4)  Statements 2 and 3  are correct:

  • Statement 1 is false,  recognizable by the asymmetries in the Markov diagram.
  • On the other hand,  there are symmetries with respect to the states  "$0$"  and  "$3$"  as well as between  "$1$"  and  "$2$".
  • In the following calculation,  instead of  $ {\rm Pr}({\it \Sigma}_{l} = 0)$  we write $ {\rm Pr}(0)$  in a simplified way.
  • Taking advantage of the property  ${\Pr}(3) = {\Pr}(0)$  and  ${\Pr}(2) = {\Pr}(1)$,  we obtain from the Markov diagram:
$${\rm Pr}(0)= {6}/{16} \cdot {\rm Pr}(0) +{4}/{16} \cdot {\rm Pr}(1)+ {1}/{16} \cdot {\rm Pr}(3)\hspace{0.15cm} \Rightarrow \hspace{0.15cm}{9}/{16} \cdot {\rm Pr}(0)= {4}/{16} \cdot {\rm Pr}(1)$$
  • From the further condition  ${\Pr}(0) + {\Pr}(1) = 1/2$  it follows further:
$${\rm Pr}(0)= {\rm Pr}(3)= {9}/{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= {4}/{26}\hspace{0.05cm}.$$
This calculation is based on the  "sum of incoming arrows in state  $0$".

One could also give equations for the other three states,  but they all give the same result:

$${\rm Pr}(1) = \ {6}/{16} \cdot {\rm Pr}(0) + {6}/{16} \cdot {\rm Pr}(1)+ {6}/{16} \cdot {\rm Pr}(2)+{3}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(2) = \ {3}/{16} \cdot {\rm Pr}(0) +{6}/{16} \cdot {\rm Pr}(1)+{6}/{16} \cdot {\rm Pr}(2)+{6}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$${\rm Pr}(3) = \ {1}/{16} \cdot {\rm Pr}(0) + {4}/{16} \cdot {\rm Pr}(2)+{6}/{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.$$