Difference between revisions of "Aufgaben:Exercise 3.12: Trellis Diagram for Two Precursors"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Viterbi_Receiver}}
  
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellisdiagramm für zwei Vorläufer]]
+
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellis diagram for two precursors]]
Wir gehen von den Grundimpulswerten  $g_0$,  $g_{\rm –1}$  und  $g_{\rm –2}$  aus:
+
We assume the basic pulse values   $g_0$,  $g_{\rm –1}$  and  $g_{\rm –2}$:   
*Das bedeutet, dass die Entscheidung über das Symbol  $a_{\rm \nu}$  auch durch die nachfolgenden Koeffizienten  $a_{\rm \nu +1}$  und  $a_{\rm \nu +2}$  beeinflusst wird.
+
*This means that the decision on the symbol   $a_{\rm \nu}$  is also influenced by the subsequent coefficients   $a_{\rm \nu +1}$  and  $a_{\rm \nu +2}$.   
*Damit sind für jeden Zeitpunkt  $\nu$  genau acht Fehlergrößen  $\varepsilon_{\rm \nu}$  zu bestimmen, aus denen die minimalen Gesamtfehlergrößen  ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  und  ${\it \Gamma}_{\rm \nu}(11)$  berechnet werden können.  
+
*Thus, for each time point   $\nu$,  exactly eight error quantities   $\varepsilon_{\rm \nu}$  have to be determined, from which the minimum total error quantities   ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  and  ${\it \Gamma}_{\rm \nu}(11)$  can be calculated.
*Hierbei liefert beispielsweise  ${\it \Gamma}_{\rm \nu}(01)$  Information über das Symbol  $a_{\rm \nu}$  unter der Annahme, dass  $a_{\rm \nu +1} = 0$  und  $a_{\rm \nu +2} = 1$  sein werden.  
+
*Here, for example,   ${\it \Gamma}_{\rm \nu}(01)$  provides information about the symbol   $a_{\rm \nu}$  under the assumption that   $a_{\rm \nu +1} = 0$  and  $a_{\rm \nu +2} = 1$  will be.
*Die minimale Gesamtfehlergröße  ${\it \Gamma}_{\rm \nu}(01)$  ist hierbei der kleinere Wert aus dem Vergleich von
+
*Here, the minimum total error quantity   ${\it \Gamma}_{\rm \nu}(01)$  is the smaller value obtained from the comparison of
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm und}
+
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and}
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
  
Zur Berechnung der minimalen Gesamtfehlergröße  ${\it \Gamma}_2(10)$  in den Teilaufgaben '''(1)''' und '''(2)''' soll von folgenden Zahlenwerten ausgegangen werden:
+
To calculate the minimum total error quantity   ${\it \Gamma}_2(10)$  in subtasks '''(1)''' and '''(2)''', assume the following numerical values:
* unipolare Amplitudenkoeffizienten:  $a_{\rm \nu} ∈ \{0, 1\}$,
+
* unipolar amplitude coefficients:  $a_{\rm \nu} ∈ \{0, 1\}$,
* Grundimpulswerte  $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
+
* basic pulse values   $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
* anliegender Detektionsabtastwert:  $d_2 = 0.2$,  
+
* applied detection sample:  $d_2 = 0.2$,  
* Minimale Gesamtfehlergrößen zum Zeitpunkt  $\nu = 1$:
+
* Minimum total error quantities at time  $\nu = 1$:
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
  1.2
 
  1.2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Grafik ist das vereinfachte Trellisdiagramm für die Zeitpunkte  $\nu = 1$  bis  $\nu = 8$  dargestellt.
+
The graph shows the simplified trellis diagram for time points   $\nu = 1$  to   $\nu = 8$.   
*Blaue Zweige kommen entweder von  ${\it \Gamma}_{\rm \nu –1}(00)$  oder von  ${\it \Gamma}_{\rm \nu –1}(01)$  und kennzeichnen eine hypothetische "$0$".  
+
*Blue branches come from either   ${\it \Gamma}_{\rm \nu –1}(00)$  or   ${\it \Gamma}_{\rm \nu –1}(01)$  and denote a hypothetical "$0$".  
*Dagegen weisen alle roten Zweige – ausgehend von den Zuständen  ${\it \Gamma}_{\rm \nu –1}(10)$  bzw.  ${\it \Gamma}_{\rm \nu –1}(11)$  – auf das Symbol "$1$" hin.
+
*In contrast, all red branches – starting from the   ${\it \Gamma}_{\rm \nu –1}(10)$  or   ${\it \Gamma}_{\rm \nu –1}(11)$  states – indicate the symbol "$1$".
  
  
Line 28: Line 28:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger|Viterbi–Empfänger]].
+
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 
   
 
   
* Alle Größen sind hier normiert zu verstehen.  
+
* All quantities here are to be understood normalized.
*Gehen Sie zudem von unipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
+
* Also, assume unipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
* Die Thematik wird auch im interaktiven Applet   [[Applets:Viterbi|Eigenschaften des Viterbi–Empfängers]]  behandelt.
+
* The topic is also covered in the interactive applet   [[Applets:Viterbi|"Properties of the Viterbi Receiver"]]. 
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die folgenden Fehlergrößen:
+
{Calculate the following error quantities:
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_2(010) \ = \ $ { 0.01 3% }
 
$\varepsilon_2(010) \ = \ $ { 0.01 3% }
Line 46: Line 46:
 
$\varepsilon_2(111) \ = \ $ { 0.64 3% }
 
$\varepsilon_2(111) \ = \ $ { 0.64 3% }
  
{Berechnen Sie die folgenden minimalen Gesamtfehlergrößen:
+
{Calculate the following minimum total error quantities:
 
|type="{}"}
 
|type="{}"}
 
${\it \Gamma}_2(10) \ = \ $ { 0.21 3% }
 
${\it \Gamma}_2(10) \ = \ $ { 0.21 3% }
 
${\it \Gamma}_2(11) \ = \ $ { 0.29 3% }
 
${\it \Gamma}_2(11) \ = \ $ { 0.29 3% }
  
{Wie lauten die vom Viterbi&ndash;Empfänger ausgegebene Symbole?
+
{What are the symbols output by the Viterbi receiver?
 
|type="[]"}
 
|type="[]"}
+ Die ersten sieben Symbole sind &nbsp;$1011010$.
+
+ The first seven symbols are &nbsp;$1011010$.
- Die ersten sieben Symbole sind &nbsp;$1101101$.
+
- The first seven symbols are &nbsp;$1101101$.
- Das letzte Symbol &nbsp;$a_8 = 1$&nbsp; ist sicher.
+
- The last symbol &nbsp;$a_8 = 1$&nbsp; is safe.
+ Über das Symbol &nbsp;$a_8$&nbsp; ist noch keine endgültige Aussage möglich.
+
+ No definite statement can be made about the symbol &nbsp;$a_8$.&nbsp;  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die erste Fehlergröße wird wie folgt berechnet:
+
'''(1)'''&nbsp; The first error quantity is calculated as follows:
 
:$$\varepsilon_{2}(010)  = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01}
 
:$$\varepsilon_{2}(010)  = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Entsprechend gilt für die weiteren Fehlergrößen:
+
Correspondingly, for the other error quantities:
 
:$$\varepsilon_{2}(011) \ = \  [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},$$
 
:$$\varepsilon_{2}(011) \ = \  [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},$$
 
:$$\varepsilon_{2}(110) \ = \  [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},$$
 
:$$\varepsilon_{2}(110) \ = \  [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},$$
Line 72: Line 72:
  
  
'''(2)'''&nbsp; Die Aufgabe ist, jeweils den minimalen Wert von zwei Vergleichswerten zu finden:
+
'''(2)'''&nbsp; The task is to find the minimum value of each of two comparison values:
 
:$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010),
 
:$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010),
 
  \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] =  {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21}
 
  \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] =  {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21}
Line 81: Line 81:
  
  
'''(3)'''&nbsp; Richtig sind der <u>erste und der letzte Lösungsvorschlag</u>:  
+
'''(3)'''&nbsp; The <u>first and last solutions</u> are correct:  
*Die Folge $1011010$ erkennt man aus dem durchgehenden Pfad: &nbsp; &nbsp; "Rot &ndash; Blau &ndash; Rot &ndash; Rot &ndash; Blau &ndash; Rot &ndash; Blau".
+
*The sequence $1011010$ can be recognized from the continuous path: &nbsp; &nbsp; "red &ndash; blue &ndash; red &ndash; red &ndash; blue &ndash; red &ndash; blue".
*Dagegen kann über das Symbol $a_8$ zum Zeitpunkt $\nu = 8$ noch keine endgültige Aussage gemacht werden:  
+
*On the other hand, no final statement can be made about the symbol $a_8$ at time $\nu = 8$:
*Nur unter der Hypothese $a_9 = 1$ <u>und</u> $a_{\rm 10} = 1$ würde man sich für $a_8 = 0$ entscheiden, bei anderen Hypothesen für $a_8 = 1$.
+
*Only under the hypothesis $a_9 = 1$ <u>and</u> $a_{\rm 10} = 1$ one would decide for $a_8 = 0$, under other hypotheses for $a_8 = 1$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 10:36, 8 June 2022

Trellis diagram for two precursors

We assume the basic pulse values   $g_0$,  $g_{\rm –1}$  and  $g_{\rm –2}$: 

  • This means that the decision on the symbol   $a_{\rm \nu}$  is also influenced by the subsequent coefficients   $a_{\rm \nu +1}$  and  $a_{\rm \nu +2}$. 
  • Thus, for each time point   $\nu$,  exactly eight error quantities   $\varepsilon_{\rm \nu}$  have to be determined, from which the minimum total error quantities   ${\it \Gamma}_{\rm \nu}(00)$,  ${\it \Gamma}_{\rm \nu}(01)$,  ${\it \Gamma}_{\rm \nu}(10)$  and  ${\it \Gamma}_{\rm \nu}(11)$  can be calculated.
  • Here, for example,   ${\it \Gamma}_{\rm \nu}(01)$  provides information about the symbol   $a_{\rm \nu}$  under the assumption that   $a_{\rm \nu +1} = 0$  and  $a_{\rm \nu +2} = 1$  will be.
  • Here, the minimum total error quantity   ${\it \Gamma}_{\rm \nu}(01)$  is the smaller value obtained from the comparison of
$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and} \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$

To calculate the minimum total error quantity   ${\it \Gamma}_2(10)$  in subtasks (1) and (2), assume the following numerical values:

  • unipolar amplitude coefficients:  $a_{\rm \nu} ∈ \{0, 1\}$,
  • basic pulse values   $g_0 = 0.5$,  $g_{\rm –1} = 0.3$,  $g_{\rm –2} = 0.2$,
  • applied detection sample:  $d_2 = 0.2$,
  • Minimum total error quantities at time  $\nu = 1$:
$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.$$

The graph shows the simplified trellis diagram for time points   $\nu = 1$  to   $\nu = 8$. 

  • Blue branches come from either   ${\it \Gamma}_{\rm \nu –1}(00)$  or   ${\it \Gamma}_{\rm \nu –1}(01)$  and denote a hypothetical "$0$".
  • In contrast, all red branches – starting from the   ${\it \Gamma}_{\rm \nu –1}(10)$  or   ${\it \Gamma}_{\rm \nu –1}(11)$  states – indicate the symbol "$1$".



Notes:

  • All quantities here are to be understood normalized.
  • Also, assume unipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
  • The topic is also covered in the interactive applet  "Properties of the Viterbi Receiver"


Questions

1

Calculate the following error quantities:

$\varepsilon_2(010) \ = \ $

$\varepsilon_2(011) \ = \ $

$\varepsilon_2(110) \ = \ $

$\varepsilon_2(111) \ = \ $

2

Calculate the following minimum total error quantities:

${\it \Gamma}_2(10) \ = \ $

${\it \Gamma}_2(11) \ = \ $

3

What are the symbols output by the Viterbi receiver?

The first seven symbols are  $1011010$.
The first seven symbols are  $1101101$.
The last symbol  $a_8 = 1$  is safe.
No definite statement can be made about the symbol  $a_8$. 


Solution

(1)  The first error quantity is calculated as follows:

$$\varepsilon_{2}(010) = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01} \hspace{0.05cm}.$$

Correspondingly, for the other error quantities:

$$\varepsilon_{2}(011) \ = \ [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},$$
$$\varepsilon_{2}(110) \ = \ [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},$$
$$\varepsilon_{2}(111) \ = \ [0.2 -0.5- 0.3-0.2]^2\hspace{0.15cm}\underline {=0.64} \hspace{0.05cm}.$$


(2)  The task is to find the minimum value of each of two comparison values:

$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] = {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21} \hspace{0.05cm},$$
$${\it \Gamma}_{2}(11) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(011), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(111)\right] = {\rm Min}\left[0.2+ 0.09, 1.2 + 0.64\right]\hspace{0.15cm}\underline {= 0.29} \hspace{0.05cm}.$$


(3)  The first and last solutions are correct:

  • The sequence $1011010$ can be recognized from the continuous path:     "red – blue – red – red – blue – red – blue".
  • On the other hand, no final statement can be made about the symbol $a_8$ at time $\nu = 8$:
  • Only under the hypothesis $a_9 = 1$ and $a_{\rm 10} = 1$ one would decide for $a_8 = 0$, under other hypotheses for $a_8 = 1$.