Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.4Z: Eye Opening and Level Number"

From LNTwww
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Impulsinterferenzen_bei_mehrstufiger_Übertragung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission
 
}}
 
}}
  
[[File:P_ID1420__Dig_Z_3_4.png|right|frame|Augenöffnung und Stufenzahl]]
+
[[File:P_ID1420__Dig_Z_3_4.png|right|frame|Binary and quaternary <br>eye diagrams]]
In dieser Aufgabe werden ein redundanzfreies Binärsystem und ein redundanzfreies Quaternärsystem hinsichtlich vertikaler Augenöffnung miteinander verglichen. Für die beiden Übertragungssysteme gelten die gleichen Randbedingungen:
+
In this exercise,&nbsp; a redundancy-free binary system and a redundancy-free quaternary system are compared with respect to vertical eye opening.&nbsp; The same boundary conditions apply to the two transmission systems:
* Der Sendegrundimpuls gs(t) ist jeweils NRZ&ndash;rechteckförmig und besitze die Höhe s0=1V.
+
* The basic transmission pulse &nbsp;gs(t)&nbsp; is NRZ rectangular in each case and has the height &nbsp;s0=1V.
* Die (äquivalente) Bitrate beträgt RB=100Mbit/s.  
+
 
* Das AWGN&ndash;Rauschen besitzt die Rauschleisungsdichte N0.
+
* The (equivalent) bit rate is &nbsp;RB=100Mbit/s.
* Das Empfangsfilter sei ein Gaußtiefpass mit der Grenzfrequenz fG=30MHz:
+
 +
* The AWGN noise has the&nbsp; (one-sided)&nbsp; noise power density &nbsp;N0.
 +
 
 +
* Let the receiver filter be a Gaussian low-pass filter with cutoff frequency &nbsp;fG=30MHz:
 
:HG(f)=eπf2/(2fG)2.
 
:HG(f)=eπf2/(2fG)2.
* Die Entscheiderschwellen sind optimal. Der Detektionszeitpunkt ist TD=0.
+
* The decision thresholds are optimal. The detection time is &nbsp;TD=0.
  
  
Für die halbe Augenöffnung eines $M$&ndash;stufigen Übertragungssystems gilt allgemein:
+
For the half-eye opening of an M-level transmission system,&nbsp; the following holds in general:
 
:¨o(TD)/2=g0M1ν=1|gν|ν=1|gν|.
 
:¨o(TD)/2=g0M1ν=1|gν|ν=1|gν|.
  
Hierbei ist g0=gd(t=0) der Hauptwert des Detektionsgrundimpulses gd(t)=gs(t)hG(t). Der zweite Term beschreibt die Nachläufer gν=gd(t=νT) und der letzte Term die Vorläufer gν=gd(t=νT).
+
*Here, &nbsp;g0=gd(t=0)&nbsp; is the&nbsp; "main value"&nbsp; of the basic detection pulse &nbsp;gd(t)=gs(t)hG(t).&nbsp;
Beachten Sie, dass bei der vorliegenden Konfiguration mit Gaußtiefpass
+
* alle Detektionsgrundimpulswerte ...g1,g0,g1,... positiv sind,
+
*The second term describes the trailers&nbsp; ("postcursors") &nbsp;gν=gd(t=νT).&nbsp;
* die Summe ...+g1+g0+g1... den konstanten Wert s0 ergibt,
+
 
* der Hauptwert mit der komplementären Gaußschen Fehlerfunktion Q(x) berechnet werden kann:
+
*The last term describes  the&nbsp; "precursors" &nbsp;gν=gd(t=νT).
 +
 
 +
 
 +
Note that in the present configuration with Gaussian low-pass
 +
* all the basic detection pulse values &nbsp;$\text{...} \, g_{\rm -1}, \, g_0, \, g_1, \, \text{...}$&nbsp; are positive,
 +
 
 +
* the (infinite) sum &nbsp;$\text{...} \, + \, g_{\rm -1} + g_0 + g_1\,\text{...}$&nbsp; gives the constant value &nbsp;s0,&nbsp;
 +
 +
* the main value can be calculated with the complementary Gaussian error function &nbsp;${\rm Q}(x)$:&nbsp;
 
:$$g_0 = s_0
 
:$$g_0 = s_0
   \cdot\left [ 1- 2 \cdot {\rm Q} \left(
+
   \cdot\big [ 1- 2 \cdot {\rm Q} \left(
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
 
\sqrt{2\pi} \cdot f_{\rm G} \cdot T
   \right)\right]
+
   \right)\big]
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Die Grafik zeigt die Augendiagramme des Binär&ndash; und des Quaternärsystems sowie &ndash; in roter Farbe &ndash; die zugehörigen Detektionsgrundimpulse gd(t). Eingezeichnet sind auch die optimalen Entscheiderschwellen E (für M=2) bzw. E1, E2, E3 (für M=4). In der Aufgabe 7) sollen diese numerisch ermittelt werden.
+
The graph shows the&nbsp; (noiseless)&nbsp; eye diagrams of the binary and quaternary systems and, in red, the corresponding basic detection pulses &nbsp;gd(t):
 +
*The optimal decision thresholds &nbsp;$E$&nbsp; $($for $M = 2)$&nbsp; and &nbsp;E1, &nbsp;E2, &nbsp;$E_3$&nbsp; $($for $M = 4)$&nbsp; are also drawn.
  
''Hinweis:''  
+
*In subtask&nbsp; '''(7)'''&nbsp; these are to be determined numerically.
* Die Aufgabe gehört zu Kapitel [[Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung|Impulsinterferenzen bei mehrstufiger Übertragung]]. Für die komplementäre Gaußsche Fehlerfunktion gilt:
+
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Intersymbol_Interference_for_Multi-Level_Transmission|"Intersymbol Interference for Multi-Level Transmission"]].
 +
 +
*For the complementary Gaussian error function applies:
 
:Q(0.25)=0.4013,Q(0.50)=0.3085,Q(0.75)=0.2266,Q(1.00)=0.1587,
 
:Q(0.25)=0.4013,Q(0.50)=0.3085,Q(0.75)=0.2266,Q(1.00)=0.1587,
 
:$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) =
 
:$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) =
 
  0.0228.$$
 
  0.0228.$$
 +
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Symboldauern beim Binär&ndash; und beim Quaternärsystem?
+
{What is the symbol duration &nbsp;T&nbsp; for the binary and the quaternary system?
 
|type="{}"}
 
|type="{}"}
M=2:T = { 10 3% } ns
+
$M = 2\text{:}\hspace{0.4cm} T \ = \ { 10 3% }\ {\rm ns}$
M=4:T = { 20 3% } ns
+
$M = 4\text{:}\hspace{0.4cm} T \ = \ { 20 3% }\ {\rm ns}$
  
{Berechnen Sie den Hauptwert für das Binärsystem.
+
{Calculate the main value &nbsp;g0&nbsp; for the binary system.
 
|type="{}"}
 
|type="{}"}
M=2:g0 = { 0.547 3% } V
+
$M = 2\text{:}\hspace{0.4cm} g_0\ = \ { 0.547 3% }\ {\rm V}$
  
{Berechnen Sie den Hauptwert für das Quaternärsystem.
+
{Calculate the main value &nbsp;g0&nbsp; for the quaternary system.
 
|type="{}"}
 
|type="{}"}
M=4:g0 = { 0.867 3% } V
+
$M = 4\text{:}\hspace{0.4cm} g_0\ = \ { 0.867 3% }\ {\rm V}$
  
{Welche Gleichungen gelten unter Berücksichtigung des Gaußtiefpasses?
+
{Which equations are valid considering the Gaussian low-pass?
 
|type="[]"}
 
|type="[]"}
+ $\ddot{o}(T_{\rm D})/2 = M \cdot g_0/(M &ndash; 1) &ndash; s_0,$
+
+ $\ddot{o}(T_{\rm D})/2 = M \cdot g_0/(M - 1) - s_0,$
- $\ddot{o}(T_{\rm D})/2 = M \cdot s_0/(M &ndash; 1) &ndash; g_0,$
+
- $\ddot{o}(T_{\rm D})/2 = M \cdot s_0/(M - 1) - g_0,$
+ $\ddot{o}(T_{\rm D})/2 = s_0/(M &ndash; 1) \cdot [1 &ndash; 2 \cdot M \cdot Q((2\pi)^{\rm 1/2} \cdot {\rm log_2} \, (M) \cdot f_{\rm G}/R_{\rm B})].$
+
+ $\ddot{o}(T_{\rm D})/2 = s_0/(M - 1) \cdot \big [1 - 2 \cdot M \cdot {\rm Q}(\sqrt{2\pi} \cdot {\rm log_2} \, (M) \cdot f_{\rm G}/R_{\rm B}) \big ].$
  
{Welche Augenöffnung ergibt sich für das Binärsystem?
+
{What is the eye opening for the binary system?
 
|type="{}"}
 
|type="{}"}
M=2:¨o(TD) = { 0.188 3% } V
+
$M = 2\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ { 0.188 3% }\ {\rm V}$
  
{Welche Augenöffnung ergibt sich für das Quaternärsystem?
+
{What is the eye opening for the quaternary system?
 
|type="{}"}
 
|type="{}"}
M=4:¨o(TD) = { 0.312 3% } V
+
$M = 4\text{:}\hspace{0.4cm} \ddot{o}(T_{\rm D})\ = \ { 0.312 3% }\ {\rm V}$
  
{Bestimmen Sie die optimalen Schwellenwerte des Quaternärsystems. Geben Sie zur Kontrolle den Schwellenwert E1 ein.
+
{Determine the optimal thresholds of the quaternary system.&nbsp; Enter the lower threshold &nbsp;E1&nbsp; as a control.
 
|type="{}"}
 
|type="{}"}
M=4:E1 = { -0.595--0.561 }  
+
$M = 4\text{:}\hspace{0.4cm} E_1\ = \ $ { -0.595--0.561 }  V
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Beim Binärsystem ist die Bitdauer gleich dem Kehrwert der äquivalenten Bitrate:
+
'''(1)'''&nbsp; In the binary system,&nbsp; the bit duration is equal to the reciprocal of the equivalent bit rate:
 
:T=1RB=1100Mbit/s=10ns_.
 
:T=1RB=1100Mbit/s=10ns_.
  
Die Symboldauer des Quaternärsystems ist doppelt so groß:
+
*The symbol duration of the quaternary system is twice as large:
 
:T=log24RB=20ns_.
 
:T=log24RB=20ns_.
  
  
'''(2)'''&nbsp; Entsprechend der angegebenen Gleichung gilt für das Binärsystem:
+
'''(2)'''&nbsp; According to the given equation,&nbsp; the following holds for the binary system:
 
:$$g_0 \ = \ s_0  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
:$$g_0 \ = \ s_0  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
   T  \right)\right]= 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot
 
   T  \right)\right]= 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot 30\,{\rm MHz} \cdot
 
   10\,{\rm ns}  \right)\right] $$
 
   10\,{\rm ns}  \right)\right] $$
:$$ \ \approx \ 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right]
+
:$$\Rightarrow \hspace{0.3cm} g_0  \ \approx \ 1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 0.75 \right)\right]
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { =  0.547\,{\rm V}}
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.2266 \right]\hspace{0.15cm}\underline { =  0.547\,{\rm V}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Aufgrund der doppelten Symboldauer ergibt sich bei gleicher Grenzfrequenz für M=4:
+
'''(3)'''&nbsp; Due to the double symbol duration,&nbsp; with the same cutoff frequency for&nbsp; M=4:
 
:$$g_0 \ =  1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right]
 
:$$g_0 \ =  1\,{\rm V}  \cdot\left [ 1- 2 \cdot {\rm Q} \left( 1.5 \right)\right]
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {=  0.867\,{\rm V}}
 
   = 1\,{\rm V}  \cdot\left [ 1- 2 \cdot 0.0668 \right] \hspace{0.15cm}\underline {=  0.867\,{\rm V}}
Line 94: Line 113:
  
  
'''(4)'''&nbsp; Erweitert man die angegebene Gleichung um $&plusmn;g_0$, so erhält man:
+
'''(4)'''&nbsp; Extending the given equation by&nbsp; $\pm g_0$,&nbsp; we obtain:
 
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu  - \sum_{\nu = 1}^{\infty} g_{-\nu}
 
:$${\ddot{o}(T_{\rm D})}/{ 2} = \frac{g_0}{ M-1} + g_0 - g_0 - \sum_{\nu = 1}^{\infty} g_\nu  - \sum_{\nu = 1}^{\infty} g_{-\nu}
 
  = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$
 
  = \frac{M}{ M-1} \cdot g_0 - s_0 \hspace{0.05cm}.$$
  
Hierbei ist berücksichtigt, dass beim Gaußtiefpass auf die Betragsbildung verzichtet werden kann und zum zweiten, dass die Summe über alle Detektionsimpulswerte gleich s0 ist. Richtig ist also der <u>erste, aber auch der letzte Lösungsvorschlag</u>:
+
Here is taken into account:
 +
*In the case of the Gaussian low-pass filter,&nbsp; the magnitude formation can be omitted.
 +
*The sum over all detection pulse values is equal to&nbsp; s0.  
 +
 
 +
 
 +
The&nbsp; <u>first, but also the last solution</u>&nbsp; is correct:
 
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0
 
:$${\ddot{o}(T_{\rm D})}/{ 2} \ = \ \frac{M}{ M-1} \cdot g_0 - s_0
 
  = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
  = \frac{M}{ M-1} \cdot s_0 \cdot\left [ 1- 2 \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
   T  \right)\right]- s_0 = $$
+
   T  \right)\right]- s_0 $$
:$$ \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
+
:$$\Rightarrow \hspace{0.3cm} {\ddot{o}(T_{\rm D})}/{ 2}  \ = \ \frac{s_0}{ M-1} \cdot \left [ 1- 2 \cdot M \cdot {\rm Q} \left( \sqrt{2\pi} \cdot f_{\rm G} \cdot
 
   T  \right)\right]
 
   T  \right)\right]
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
 +
Using the relation&nbsp; T=log2(M)/RB,&nbsp; we arrive at the third proposed solution,&nbsp; which is also applicable.
  
Mit der Beziehung T=log2(M)/RB kommt man zum dritten, ebenfalls zutreffenden Lösungsvorschlag.
 
  
 
+
'''(5)'''&nbsp; Using the results from&nbsp; '''(2)'''&nbsp; and&nbsp; '''(4)''',&nbsp; one obtains with&nbsp; M=2:
'''(5)'''&nbsp; Mit den Ergebnissen aus 2) und 4) sowie M=2 erhält man:
 
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 -  s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}}
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot (2 \cdot g_0 -  s_0) = 2 \cdot (2 \cdot 0.547\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.188\,{\rm V}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Mit g0=0.867V, s0=1V und M=4 ergibt sich dagegen:
+
'''(6)'''&nbsp; On the other hand,&nbsp; with g0=0.867V, s0=1V&nbsp; and&nbsp; M=4,&nbsp; we get:
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}}
 
:$${\ddot{o}(T_{\rm D})} = 2 \cdot ({4}/{3} \cdot 0.867\,{\rm V} -  1\,{\rm V}) \hspace{0.15cm}\underline {= 0.312\,{\rm V}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(7)'''&nbsp; Entsprechend Teilaufgabe 3) ist g0=0.867V und dementsprechend gVN=0.133V (Summe aller Vor&ndash; und Nachläufer). Die Augenöffnung beträgt ¨o=0.312V. Aus der Skizze auf der Angabenseite erkennt man, dass die obere Begrenzung des oberen Auges folgenden Wert besitzt (für TD=0):
+
'''(7)'''&nbsp; According to subtask&nbsp; '''(3)''',&nbsp; g0=0.867V&nbsp; and correspondingly gVN=0.133V&nbsp; (sum of all precursors and trailers).  
 +
*The eye opening is&nbsp; ¨o=0.312V.  
 +
 
 +
*From the sketch on the information section,&nbsp; we can see that the upper boundary&nbsp; (German:&nbsp; "obere Grenzlinie" &nbsp; &rArr; &nbsp; "o")&nbsp; of the upper eye has the following value&nbsp; $($for&nbsp; $T_{\rm D} = 0)$:
 
:$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 -  g_{\rm VN}=  0.867\,{\rm V} -  0.133\,{\rm V} = 0.734\,{\rm V}
 
:$$o = s_0 - 2 \cdot g_{\rm VN}= g_0 -  g_{\rm VN}=  0.867\,{\rm V} -  0.133\,{\rm V} = 0.734\,{\rm V}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die untere Begrenzung liegt bei:
+
*The lower limit&nbsp; (German:&nbsp; "untere Grenzlinie" &nbsp; &rArr; &nbsp; "u")&nbsp; is at:
 
:$$u = o -{\ddot{o}} =  0.734\,{\rm V} -  0.312\,{\rm V} = 0.422\,{\rm V}
 
:$$u = o -{\ddot{o}} =  0.734\,{\rm V} -  0.312\,{\rm V} = 0.422\,{\rm V}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Daraus folgt für die optimale Entscheiderschwelle des oberen Auges:
+
*From this follows for the optimal decision threshold of the upper eye:
 
:$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2}  { =  0.578\,{\rm V}}
 
:$$E_3 = \frac{o + u}{2} = \frac{0.734\,{\rm V} + 0.422\,{\rm V}}{2}  { =  0.578\,{\rm V}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Der gesuchte Schwellenwert (für das untere Auge) ist E_1 \, \underline {= \, &ndash;0.578 \, V}. Die mittlere Entscheiderschwelle liegt aus Symmetriegründen bei E2=0.
+
*The sought threshold&nbsp; (for the lower eye)&nbsp; is E_1 \, \underline {= \, &ndash;0.578 \, V}.
 +
 +
*The average decision threshold is&nbsp; E2=0&nbsp; for symmetry reasons.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.4 Augendiagramm mehrstufiger Systeme^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.4 Eye Opening with Multilevel Systems^]]

Latest revision as of 17:09, 20 June 2022

Binary and quaternary
eye diagrams

In this exercise,  a redundancy-free binary system and a redundancy-free quaternary system are compared with respect to vertical eye opening.  The same boundary conditions apply to the two transmission systems:

  • The basic transmission pulse  gs(t)  is NRZ rectangular in each case and has the height  s0=1V.
  • The (equivalent) bit rate is  RB=100Mbit/s.
  • The AWGN noise has the  (one-sided)  noise power density  N0.
  • Let the receiver filter be a Gaussian low-pass filter with cutoff frequency  fG=30MHz:
HG(f)=eπf2/(2fG)2.
  • The decision thresholds are optimal. The detection time is  TD=0.


For the half-eye opening of an M-level transmission system,  the following holds in general:

¨o(TD)/2=g0M1ν=1|gν|ν=1|gν|.
  • Here,  g0=gd(t=0)  is the  "main value"  of the basic detection pulse  gd(t)=gs(t)hG(t)
  • The second term describes the trailers  ("postcursors")  gν=gd(t=νT)
  • The last term describes the  "precursors"  gν=gd(t=νT).


Note that in the present configuration with Gaussian low-pass

  • all the basic detection pulse values  ...g1,g0,g1,...  are positive,
  • the (infinite) sum  ...+g1+g0+g1...  gives the constant value  s0
  • the main value can be calculated with the complementary Gaussian error function  Q(x)
g0=s0[12Q(2πfGT)].

The graph shows the  (noiseless)  eye diagrams of the binary and quaternary systems and, in red, the corresponding basic detection pulses  gd(t):

  • The optimal decision thresholds  E  (for M=2)  and  E1,  E2,  E3  (for M=4)  are also drawn.
  • In subtask  (7)  these are to be determined numerically.


Notes:

  • For the complementary Gaussian error function applies:
Q(0.25)=0.4013,Q(0.50)=0.3085,Q(0.75)=0.2266,Q(1.00)=0.1587,
Q(1.25)=0.1057,Q(1.50)=0.0668,Q(1.75)=0.0401,Q(2.00)=0.0228.


Questions

1

What is the symbol duration  T  for the binary and the quaternary system?

M=2:T = 

 ns
M=4:T = 

 ns

2

Calculate the main value  g0  for the binary system.

M=2:g0 = 

 V

3

Calculate the main value  g0  for the quaternary system.

M=4:g0 = 

 V

4

Which equations are valid considering the Gaussian low-pass?

¨o(TD)/2=Mg0/(M1)s0,
¨o(TD)/2=Ms0/(M1)g0,
¨o(TD)/2=s0/(M1)[12MQ(2πlog2(M)fG/RB)].

5

What is the eye opening for the binary system?

M=2:¨o(TD) = 

 V

6

What is the eye opening for the quaternary system?

M=4:¨o(TD) = 

 V

7

Determine the optimal thresholds of the quaternary system.  Enter the lower threshold  E1  as a control.

M=4:E1 = 

 V


Solution

(1)  In the binary system,  the bit duration is equal to the reciprocal of the equivalent bit rate:

T=1RB=1100Mbit/s=10ns_.
  • The symbol duration of the quaternary system is twice as large:
T=log24RB=20ns_.


(2)  According to the given equation,  the following holds for the binary system:

g0 = s0[12Q(2πfGT)]=1V[12Q(2π30MHz10ns)]
g0  1V[12Q(0.75)]=1V[120.2266]=0.547V_.


(3)  Due to the double symbol duration,  with the same cutoff frequency for  M=4:

g0 =1V[12Q(1.5)]=1V[120.0668]=0.867V_.


(4)  Extending the given equation by  ±g0,  we obtain:

¨o(TD)/2=g0M1+g0g0ν=1gνν=1gν=MM1g0s0.

Here is taken into account:

  • In the case of the Gaussian low-pass filter,  the magnitude formation can be omitted.
  • The sum over all detection pulse values is equal to  s0.


The  first, but also the last solution  is correct:

¨o(TD)/2 = MM1g0s0=MM1s0[12Q(2πfGT)]s0
¨o(TD)/2 = s0M1[12MQ(2πfGT)].

Using the relation  T=log2(M)/RB,  we arrive at the third proposed solution,  which is also applicable.


(5)  Using the results from  (2)  and  (4),  one obtains with  M=2:

¨o(TD)=2(2g0s0)=2(20.547V1V)=0.188V_.


(6)  On the other hand,  with g0=0.867V, s0=1V  and  M=4,  we get:

¨o(TD)=2(4/30.867V1V)=0.312V_.


(7)  According to subtask  (3)g0=0.867V  and correspondingly gVN=0.133V  (sum of all precursors and trailers).

  • The eye opening is  ¨o=0.312V.
  • From the sketch on the information section,  we can see that the upper boundary  (German:  "obere Grenzlinie"   ⇒   "o")  of the upper eye has the following value  (for  TD=0):
o=s02gVN=g0gVN=0.867V0.133V=0.734V.
  • The lower limit  (German:  "untere Grenzlinie"   ⇒   "u")  is at:
u=o¨o=0.734V0.312V=0.422V.
  • From this follows for the optimal decision threshold of the upper eye:
E3=o+u2=0.734V+0.422V2=0.578V.
  • The sought threshold  (for the lower eye)  is E_1 \, \underline {= \, –0.578 \, V}.
  • The average decision threshold is  E_2 = 0  for symmetry reasons.