Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"

From LNTwww
(No difference)

Revision as of 14:37, 13 July 2022

Energy-limited signals

This exercise pursues exactly the same goal as  "Exercise 4.1":

For  M=4  energy-limited signals  si(t)  with  i=1, ... ,4,  the  N  required orthonormal basis functions  φj(t)  are to be found,  which must satisfy the following condition:

<φj(t),φk(t)> = +φj(t)φk(t)dt=δjk={10j=kjk.

With  M  transmitted signals  si(t),  already fewer basis functions  φj(t)  can suffice,  namely  N.  Thus,  in general,  NM.

These are exactly the same energy-limited signals  si(t)  as in  "Exercise 4.1":

  • The difference is the different order of the signals  si(t).
  • In this exercise,  these are sorted in such a way that the basis functions can be found without using the more cumbersome  "Gram-Schmidt process"



Notes:

  • For numerical calculations,  use  A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm µ s} \hspace{0.05cm}.


Questions

1

In Exercise 4.1,  the Gram-Schmidt process resulted in  N = 3  basis functions.  How many basis functions are needed here?

N \ = \

2

Give the 2–norm of all these signals:

||s_1(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_2(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_3(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_4(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}

3

Which statements are true for the basis functions  \varphi_1(t)\varphi_2(t)  and  \varphi_3(t)?

The basis functions computed in  "Exericse 4.1"  are also appropriate here.
There are infinitely many possibilities for  \{\varphi_1(t),\ \varphi_2(t),\ \varphi_3(t)\}.
A possible set is  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\},  with  j = 1,\ 2,\ 3.
A possible set is  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\},  with  j = 1,\ 2,\ 3.

4

What are the coefficients of the signal  s_4(t)  with respect to the basis functions  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}, with  j = 1,\ 2,\ 3?

s_{\rm 41} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
s_{\rm 42} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
s_{\rm 43} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}


Solution

(1)  The only difference to Exercise 4.1 is the different numbering of the signals  s_i(t).

  • Thus it is obvious that  \underline {N = 3}  must hold here as well.


(2)  The  "2–norm"  gives the root of the signal energy and is comparable to the  "rms value"  for power-limited signals.

  • The first three signals all have the same 2–norm:
||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.
  • The norm of the last signal is larger by a factor of  \sqrt{2}:
||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.


(3)  The  first and last statements are true  in contrast to statements 2 and 3:

  • It would be completely illogical if the basis functions found should no longer hold when the signals  s_i(t)  are sorted differently.
  • The Gram–Schmidt process yields only one possible set  \{\varphi_{\it j}(t)\}  of basis functions.  A different sorting  (possibly)  yields a different basis function.
  • The number of permutations of   M = 4   signals is   4! = 24.  In any case,  there cannot be more basis function sets   ⇒   solution 2 is wrong.
  • However,  there are probably  (because of  N = 3)  only  3! = 6  possible sets of basis functions. 
  • As can be seen from the  "solution"  to  "Exercise 4.1",  the same basis functions will result with the order  s_1(t),\ s_2(t),\ s_4(t),\ s_3(t)  as with  s_1(t),\ s_2(t),\ s_3(t),\ s_4(t).  However,  this is only a conjecture of the authors;  we have not checked it.
  • Statement 3 cannot be true simply because of the different units of  s_i(t)  and  \varphi_{\it j}(t).  Like  A,  the signals have the unit  \sqrt{\rm W},  the basis functions the unit \sqrt{\rm 1/s}.
  • Thus,  the last solution is correct,  where for  K  holds:
K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.


(4)  From the comparison of the diagrams in the specification section we can see:

s_{4}(t) = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.
  • Furthermore holds:
s_{4}(t) = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)
\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}.