Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.1: About the Gram-Schmidt Process"

From LNTwww
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1994__Dig_A_4_1.png|right|frame|Vorgabe zum Gram-Schmidt-Verfahren]]
+
[[File:P_ID1994__Dig_A_4_1.png|right|frame|Specification for the Gram-Schmidt process]]
Für die vier durch die Abbildung definierten Signale  s1(t),...,s4(t)  sind durch Anwendung des Gram–Schmidt–Verfahrens die drei sich ergebenden Basisfunktionen  φ1(t),  φ2(t)  und  φ3(t)  zu ermitteln, so dass für die Signale mit  i=1,...,4  geschrieben werden kann:
+
For the four signals  s1(t),...,s4(t)  defined by the figure,  the three resulting basis functions  φ1(t),  φ2(t)  and  φ3(t)  are to be determined by applying the Gram-Schmidt process,  so that for the signals with   i=1,...,4  can be written:
 
:si(t)=si1φ1(t)+si2φ2(t)+si3φ3(t).
 
:si(t)=si1φ1(t)+si2φ2(t)+si3φ3(t).
  
*In der Teilaufgabe '''(1)''' gelte  A2=1 mW  und  T = 1 \ \rm µ s.  
+
*In subtask  '''(1)''',  let  A2=1 mW  and  T = 1 \ \rm µ s.
*In den späteren Teilaufgaben sind die Amplitude und die Zeit jeweils normierte Größen:   A=1,  T=1.  
+
*Damit sind sowohl die Koeffizienten  sij  als auch die Basisfunktionen  φj(t)  – jeweils mit  j=1,2,3  – dimensionslose Größen.
+
*In the later subtasks,  the amplitude and the time are normalized quantities:   A=1,  T=1.
 
+
 +
*Thus,  both the coefficients  sij  and the basis functions  φj(t)  (with  $j = 1,\ 2,\ 3)$  are dimensionless quantities.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
  
''Hinweise:''
+
*Reference is made in particular to the sections  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Orthonormal_basis_functions|"Orthonormal basis functions"]]  and  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].
 
*Bezug genommen wird insbesondere auf die Seiten  [[Digitalsignalübertragung/Signale,_Basisfunktionen_und_Vektorräume#Orthonormale_Basisfunktionen|Orthonormale Basisfunktionen]]  und  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt|Gram–Schmidt–Verfahren]].  
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Einheiten besitzen die folgenden Größen mit&nbsp; A2=1mW&nbsp; und&nbsp; T = 1 \, {\rm &micro; s}?
+
{What are the units of the following quantities with&nbsp; A2=1mW&nbsp; and&nbsp; T = 1 \, {\rm &micro; s}?
 
|type="[]"}
 
|type="[]"}
- Die Basisfunktionen &nbsp;φj(t)&nbsp; sind dimensionslos.
+
- The basis functions &nbsp;φj(t)&nbsp; are dimensionless.
+ Die Basisfunktionen &nbsp;φj(t)&nbsp; haben die Einheit &nbsp;s.
+
+ The basis functions &nbsp;φj(t)&nbsp; have the unit &nbsp;s.
- Die Koeffizienten &nbsp;sij&nbsp; sind dimensionslos.
+
- The coefficients &nbsp;sij&nbsp; are dimensionless.
+ Die Koeffizienten &nbsp;sij&nbsp; haben die Einheit &nbsp;Ws.
+
+ The coefficients &nbsp;sij&nbsp; have the unit &nbsp;Ws.
  
{Führen Sie den ersten Schritt des Gram&ndash;Schmidt&ndash;Verfahrens durch. Wie für die weiteren Aufgaben gelte &nbsp;A=1&nbsp; und &nbsp;T=1.  
+
{Perform the first step of the Gram-Schmidt process.&nbsp; As for the other tasks,&nbsp; let &nbsp;A=1&nbsp; and &nbsp;T=1 hold.  
 
|type="{}"}
 
|type="{}"}
 
s11 =  { 1.414 3% }
 
s11 =  { 1.414 3% }
Line 37: Line 38:
 
s13 =  { 0. }
 
s13 =  { 0. }
  
{Wie lauten die Koeffizienten des Signals&nbsp; s2(t)&nbsp; mit &nbsp;A=1 &nbsp;und&nbsp; T=1?
+
{What are the coefficients of the signal&nbsp; s2(t)&nbsp; with &nbsp;A=1 &nbsp;and&nbsp; T=1?
 
|type="{}"}
 
|type="{}"}
 
s21 =  { 0.707 3% }
 
s21 =  { 0.707 3% }
Line 43: Line 44:
 
s23 =  { 0. }
 
s23 =  { 0. }
  
{Wie lauten die Koeffizienten des Signals&nbsp; s3(t)&nbsp; mit &nbsp;A=1 &nbsp;und&nbsp; T=1?
+
{What are the coefficients of the signal&nbsp; s3(t)&nbsp; with &nbsp;A=1 &nbsp;and&nbsp; T=1?
 
|type="{}"}
 
|type="{}"}
 
s31 =  { -0.72821--0.68579 }
 
s31 =  { -0.72821--0.68579 }
Line 49: Line 50:
 
s33 =  { 0. }
 
s33 =  { 0. }
  
{Wie lauten die Koeffizienten des Signals&nbsp; s4(t)&nbsp; mit &nbsp;A=1 &nbsp;und&nbsp; T=1?
+
{What are the coefficients of the signal&nbsp; s4(t)&nbsp; with &nbsp;A=1 &nbsp;and&nbsp; T=1?
 
|type="{}"}
 
|type="{}"}
 
s41 =  { 0. }
 
s41 =  { 0. }
Line 56: Line 57:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 4</u>:
+
'''(1)'''&nbsp; <u>Solutions 2 and 4</u>&nbsp; are correct:
*Jede orthonormale Basisfunktion soll die Energie 1 aufweisen, das heißt, es muss gelten:
+
*Every orthonormal basis function should have energy&nbsp; $1$,&nbsp; that is,&nbsp; it must hold:
 
:$$||\varphi_j(t)||^2 =  \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d}  t = 1  
 
:$$||\varphi_j(t)||^2 =  \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d}  t = 1  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Damit diese Bedingung zu erfüllen ist, muss die Basisfunktion die Einheit s besitzen. Zu berücksichtigen ist noch die Gleichung
+
*For this condition to be satisfied,&nbsp; the basis function must have unit&nbsp; s.&nbsp;
 +
*Another equation to be considered is
 
:si(t)=Nj=1sijφj(t).
 
:si(t)=Nj=1sijφj(t).
*Die Signale selbst weisen wie A die Einheit W auf. Wegen der Einheit 1/s von φj(t) ist diese Gleichung nur dann mit der richtigen Dimension zu erfüllen, wenn die Koeffizienten sij mit der Einheit Ws angegeben werden.  
+
*Like the parameter&nbsp; A,&nbsp; the signals themselves have the unit&nbsp; W.&nbsp;
 +
*Because of the unit&nbsp; 1/s&nbsp; of&nbsp; φj(t),&nbsp; this equation can be satisfied with the correct dimension only if the coefficients&nbsp; sij&nbsp; are given with the unit&nbsp; Ws.
  
  
  
'''(2)'''&nbsp; Die Energie des Signals s1(t) ist gleich E1=2. Daraus folgt für die Norm, die Basisfunktion φ1(t) und den Koeffizienten s11:
+
'''(2)'''&nbsp; The energy of the signal&nbsp; s1(t) &nbsp;is equal to&nbsp; E1=2.&nbsp;
 +
*It follows for the norm,&nbsp; the basis function&nbsp; φ1(t)&nbsp; and the coefficient&nbsp; s11:
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 
+
*The other coefficients are&nbsp; s12=s13=0_,&nbsp; since the associated basis functions have not been found at all yet,&nbsp; while&nbsp; φ1(t)&nbsp; is equal in form to&nbsp; s1(t).
Die weiteren Koeffizienten sind s12=s13=0_, da die zugehörigen Basisfunktionen bisher noch gar nicht gefunden wurden, während φ1(t) formgleich mit s1(t) ist.
 
  
  
  
'''(3)'''&nbsp; Da nach Berücksichtigung von s2(t) höchstens zwei Basisfunktionen gefunden sind, gilt mit Sicherheit s23=0_. Dagegen erhält man für den Koeffizienten
+
'''(3)'''&nbsp; Since at most two basis functions are found after considering s2(t) &nbsp; &rArr; &nbsp; s23=0_ holds with certainty.&nbsp; On the other hand one obtains
 +
*for the coefficient
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
\hspace{0.05cm};$$
 
\hspace{0.05cm};$$
  
für die Hilfsfunktion θ2(t):
+
*for the auxiliary function θ2(t):
 
:$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\
 
:$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\
 
  0 - 0.707 \cdot (-0.707) = 0.5  \end{array} \right.\quad
 
  0 - 0.707 \cdot (-0.707) = 0.5  \end{array} \right.\quad
Line 89: Line 93:
 
\hspace{0.05cm}; $$
 
\hspace{0.05cm}; $$
  
für die zweite Basisfunktion:
+
*for the second basis function:
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm}
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm}
 
||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
 
||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
Line 98: Line 102:
 
\hspace{0.05cm}; $$
 
\hspace{0.05cm}; $$
  
und schließlich für den zweiten Koeffizienten
+
*and finally for the second coefficient
 
:$$s_{22}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline {  = 0.707}
 
:$$s_{22}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline {  = 0.707}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
[[File:P_ID1995__Dig_A_4_1c.png|right|frame|Gram-Schmidt calculations]]
  
Die Berechnungen sind in der nachfolgenden Grafik verdeutlicht.
+
The calculations are illustrated in the graph below.
  
[[File:P_ID1995__Dig_A_4_1c.png|center|frame|Gram-Schmidt-Berechnungen]]
 
  
'''(4)'''&nbsp; Man erkennt sofort, dass s3(t) sich als Linearkombination aus s1(t) und s2(t) ausdrücken lässt.
+
'''(4)'''&nbsp; It can be seen immediately that&nbsp; s3(t)&nbsp; can be expressed as a linear combination of&nbsp; s1(t)&nbsp; and&nbsp; s2(t).
:$$s_{3}(t)  = -s_{1}(t) + s_{2}(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
+
:$$s_{3}(t)  = -s_{1}(t) + s_{2}(t),$$
 +
:$$s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
 
:s32 = s12+s22=0+0.707=0.707_,
 
:s32 = s12+s22=0+0.707=0.707_,
 
:s33 = s13+s23=0+0=0_.
 
:s33 = s13+s23=0+0=0_.
  
  
'''(5)'''&nbsp; Der Bereich 2 &#8804; t &#8804; 3 wird weder von φ1(t) noch von φ2(t) abgedeckt. Deshalb liefert s4(t) die neue Basisfunktion φ3(t). Da außerdem s4(t) nur Anteile im Bereich 2 &#8804; t &#8804; 3 aufweist und ||s4(t)||=1 ist, ergibt sich φ3(t)=s4(t) sowie
+
'''(5)'''&nbsp; The range&nbsp; 2 &#8804; t &#8804; 3&nbsp; is not covered by&nbsp; φ1(t)&nbsp; and&nbsp; φ2(t).  
 +
*Therefore,&nbsp; s4(t)&nbsp; provides the new basis function&nbsp; φ3(t).&nbsp;
 +
*Since s4(t)&nbsp; has components only in the range&nbsp; 2 &#8804; t &#8804; 3 and ||s4(t)||=1,&nbsp; we obtain&nbsp; φ3(t)=s4(t)&nbsp; as well as
 
:s41=0_,s42=0_,s43=1_.
 
:s41=0_,s42=0_,s43=1_.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 118: Line 125:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Basisfunktionen & Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 14:56, 13 July 2022

Specification for the Gram-Schmidt process

For the four signals  s1(t),...,s4(t)  defined by the figure,  the three resulting basis functions  φ1(t)φ2(t)  and  φ3(t)  are to be determined by applying the Gram-Schmidt process,  so that for the signals with   i=1,...,4  can be written:

si(t)=si1φ1(t)+si2φ2(t)+si3φ3(t).
  • In subtask  (1),  let  A2=1 mW  and  T = 1 \ \rm µ s.
  • In the later subtasks,  the amplitude and the time are normalized quantities:   A = 1T = 1.
  • Thus,  both the coefficients  s_{\it ij}  and the basis functions  \varphi_{\it j}(t)  (with  j = 1,\ 2,\ 3)  are dimensionless quantities.



Notes:


Questions

1

What are the units of the following quantities with  A^2 = 1 \, \rm mW  and  T = 1 \, {\rm µ s}?

The basis functions  \varphi_j(t)  are dimensionless.
The basis functions  \varphi_j(t)  have the unit  \rm \sqrt{\rm s}.
The coefficients  s_{\it ij}  are dimensionless.
The coefficients  s_{\it ij}  have the unit  \rm \sqrt{\rm Ws}.

2

Perform the first step of the Gram-Schmidt process.  As for the other tasks,  let  A = 1  and  T = 1 hold.

s_{\rm 11} \ = \

s_{\rm 12} \ = \

s_{\rm 13} \ = \

3

What are the coefficients of the signal  s_2(t)  with  A = 1  and  T = 1?

s_{\rm 21} \ = \

s_{\rm 22} \ = \

s_{\rm 23} \ = \

4

What are the coefficients of the signal  s_3(t)  with  A = 1  and  T = 1?

s_{\rm 31} \ = \

s_{\rm 32} \ = \

s_{\rm 33} \ = \

5

What are the coefficients of the signal  s_4(t)  with  A = 1  and  T = 1?

s_{\rm 41} \ = \

s_{\rm 42} \ = \

s_{\rm 43} \ = \


Solution

(1)  Solutions 2 and 4  are correct:

  • Every orthonormal basis function should have energy  1,  that is,  it must hold:
||\varphi_j(t)||^2 = \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d} t = 1 \hspace{0.05cm}.
  • For this condition to be satisfied,  the basis function must have unit  \rm \sqrt{\rm s}
  • Another equation to be considered is
s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t).
  • Like the parameter  A,  the signals themselves have the unit  \rm \sqrt{\rm W}
  • Because of the unit  \rm \sqrt{\rm 1/s}  of  \varphi_{ j}(t),  this equation can be satisfied with the correct dimension only if the coefficients  s_{\it ij}  are given with the unit  \rm \sqrt{\rm Ws}.


(2)  The energy of the signal  s_1(t)  is equal to  E_1 = 2

  • It follows for the norm,  the basis function  \varphi_1(t)  and the coefficient  s_{\rm 11}:
||s_1(t)|| = \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm} s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} } \hspace{0.05cm}.
  • The other coefficients are  \underline {s_{\rm 12} = s_{\rm 13} = 0},  since the associated basis functions have not been found at all yet,  while  \varphi_1(t)  is equal in form to  s_1(t).


(3)  Since at most two basis functions are found after considering s_2(t)   ⇒   s_{\rm 23} \hspace{0.15cm} \underline{= 0} holds with certainty.  On the other hand one obtains

  • for the coefficient
||s_1(t)|| = \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm} s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} } \hspace{0.05cm};
  • for the auxiliary function \theta_2(t):
\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\ 0 - 0.707 \cdot (-0.707) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < 1 \\ 1 \le t < 2 \\ \end{array} \hspace{0.05cm};
  • for the second basis function:
\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm} ||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707
\Rightarrow \hspace{0.3cm} \varphi_2(t) = \left\{ \begin{array}{c} 0.5/0.707 = 0.707\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < 2 \\ 2 \le t < 3 \\ \end{array} \hspace{0.05cm};
  • and finally for the second coefficient
s_{22} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline { = 0.707} \hspace{0.05cm}.
Gram-Schmidt calculations

The calculations are illustrated in the graph below.


(4)  It can be seen immediately that  s_3(t)  can be expressed as a linear combination of  s_1(t)  and  s_2(t).

s_{3}(t) = -s_{1}(t) + s_{2}(t),
s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},
s_{32} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{12} + s_{22} = 0 + 0.707 \hspace{0.1cm}\underline {= 0.707}\hspace{0.05cm},
s_{33} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{13} + s_{23} = 0 + 0 \hspace{0.1cm}\underline {= 0}\hspace{0.05cm}.


(5)  The range  2 ≤ t ≤ 3  is not covered by  \varphi_1(t)  and  \varphi_2(t).

  • Therefore,  s_4(t)  provides the new basis function  \varphi_3(t)
  • Since s_4(t)  has components only in the range  2 ≤ t ≤ 3 and ||s_4(t)|| = 1,  we obtain  \varphi_3(t) = s_4(t)  as well as
s_{41} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0}, \hspace{0.2cm}s_{42} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1} \hspace{0.05cm}.