Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.1: About the Gram-Schmidt Process"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
[[File:P_ID1994__Dig_A_4_1.png|right|frame|Specification for the Gram-Schmidt process]]
 
[[File:P_ID1994__Dig_A_4_1.png|right|frame|Specification for the Gram-Schmidt process]]
For the four signals  s1(t),...,s4(t)  defined by the figure, the three resulting basis functions  φ1(t),  φ2(t)  and  φ3(t)  are to be determined by applying the Gram-Schmidt process, so that for the signals with   i=1,...,4  can be written:
+
For the four signals  s1(t),...,s4(t)  defined by the figure,  the three resulting basis functions  φ1(t),  φ2(t)  and  φ3(t)  are to be determined by applying the Gram-Schmidt process,  so that for the signals with   i=1,...,4  can be written:
 
:si(t)=si1φ1(t)+si2φ2(t)+si3φ3(t).
 
:si(t)=si1φ1(t)+si2φ2(t)+si3φ3(t).
  
*In subtask '''(1)''', let  A2=1 mW  and  T = 1 \ \rm µ s.  
+
*In subtask  '''(1)''',  let  A2=1 mW  and  T = 1 \ \rm µ s.
*In the later subtasks, the amplitude and the time are normalized quantities, respectively:   A=1,  T=1.  
+
*Thus, both the coefficients  sij  and the basis functions  φj(t)  – with  j=1,2,3  – are dimensionless quantities.
+
*In the later subtasks,  the amplitude and the time are normalized quantities:   A=1,  T=1.
 
+
 +
*Thus,  both the coefficients  sij  and the basis functions  φj(t)  (with  $j = 1,\ 2,\ 3)$  are dimensionless quantities.
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
  
''Notes:''
 
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 
 
*Reference is made in particular to the sections  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Orthonormal_basis_functions|"Orthonormal basis functions"]]  and  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].  
 
*Reference is made in particular to the sections  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Orthonormal_basis_functions|"Orthonormal basis functions"]]  and  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].  
 
   
 
   
Line 31: Line 32:
 
+ The coefficients  sij  have the unit  Ws.
 
+ The coefficients  sij  have the unit  Ws.
  
{Perform the first step of the Gram-Schmidt process. As for the other tasks, let  A=1  and  T=1 hold.  
+
{Perform the first step of the Gram-Schmidt process.  As for the other tasks,  let  A=1  and  T=1 hold.  
 
|type="{}"}
 
|type="{}"}
 
s11 =  { 1.414 3% }
 
s11 =  { 1.414 3% }
Line 58: Line 59:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Solutions 2 and 4</u> are correct:
+
'''(1)'''&nbsp; <u>Solutions 2 and 4</u>&nbsp; are correct:
*Every orthonormal basis function should have energy 1, that is, it must hold:
+
*Every orthonormal basis function should have energy&nbsp; $1$,&nbsp; that is,&nbsp; it must hold:
 
:$$||\varphi_j(t)||^2 =  \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d}  t = 1  
 
:$$||\varphi_j(t)||^2 =  \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d}  t = 1  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*For this condition to be satisfied, the basis function must have unit s. Another equation to be considered is
+
*For this condition to be satisfied,&nbsp; the basis function must have unit&nbsp; s.&nbsp;
 +
*Another equation to be considered is
 
:si(t)=Nj=1sijφj(t).
 
:si(t)=Nj=1sijφj(t).
*Like A, the signals themselves have the unit W. Because of the unit 1/s of φj(t), this equation can be satisfied with the correct dimension only if the coefficients sij are given with the unit Ws.
+
*Like the parameter&nbsp; A,&nbsp; the signals themselves have the unit&nbsp; W.&nbsp;
 +
*Because of the unit&nbsp; 1/s&nbsp; of&nbsp; φj(t),&nbsp; this equation can be satisfied with the correct dimension only if the coefficients&nbsp; sij&nbsp; are given with the unit&nbsp; Ws.
  
  
  
'''(2)'''&nbsp; The energy of the signal s1(t) is equal to E1=2. It follows for the norm, the basis function φ1(t) and the coefficient s11:
+
'''(2)'''&nbsp; The energy of the signal&nbsp; s1(t) &nbsp;is equal to&nbsp; E1=2.&nbsp;
 +
*It follows for the norm,&nbsp; the basis function&nbsp; φ1(t)&nbsp; and the coefficient&nbsp; s11:
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 
+
*The other coefficients are&nbsp; s12=s13=0_,&nbsp; since the associated basis functions have not been found at all yet,&nbsp; while&nbsp; φ1(t)&nbsp; is equal in form to&nbsp; s1(t).
The other coefficients are s12=s13=0_, since the associated basis functions have not been found at all yet, while φ1(t) is equal in form to s1(t).
 
  
  
  
'''(3)'''&nbsp; Since at most two basis functions are found after considering s2(t), s23=0_ holds with certainty. On the other hand one obtains for the coefficient
+
'''(3)'''&nbsp; Since at most two basis functions are found after considering s2(t) &nbsp; &rArr; &nbsp; s23=0_ holds with certainty.&nbsp; On the other hand one obtains  
 +
*for the coefficient
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
:$$||s_1(t)|| =  \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm}
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} }
 
\hspace{0.05cm};$$
 
\hspace{0.05cm};$$
  
for the auxiliary function θ2(t):
+
*for the auxiliary function θ2(t):
 
:$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\
 
:$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\
 
  0 - 0.707 \cdot (-0.707) = 0.5  \end{array} \right.\quad
 
  0 - 0.707 \cdot (-0.707) = 0.5  \end{array} \right.\quad
Line 89: Line 93:
 
\hspace{0.05cm}; $$
 
\hspace{0.05cm}; $$
  
for the second basis function:
+
*for the second basis function:
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm}
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm}
 
||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
 
||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707$$
Line 98: Line 102:
 
\hspace{0.05cm}; $$
 
\hspace{0.05cm}; $$
  
and finally for the second coefficient
+
*and finally for the second coefficient
 
:$$s_{22}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline {  = 0.707}
 
:$$s_{22}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline {  = 0.707}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
[[File:P_ID1995__Dig_A_4_1c.png|right|frame|Gram-Schmidt calculations]]
  
 
The calculations are illustrated in the graph below.
 
The calculations are illustrated in the graph below.
  
[[File:P_ID1995__Dig_A_4_1c.png|center|frame|Gram-Schmidt calculations]]
 
  
'''(4)'''&nbsp; It can be seen immediately that s3(t) can be expressed as a linear combination of s1(t) and s2(t).
+
'''(4)'''&nbsp; It can be seen immediately that&nbsp; s3(t)&nbsp; can be expressed as a linear combination of&nbsp; s1(t)&nbsp; and&nbsp; s2(t).
:$$s_{3}(t)  = -s_{1}(t) + s_{2}(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
+
:$$s_{3}(t)  = -s_{1}(t) + s_{2}(t),$$
 +
:$$s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},$$
 
:s32 = s12+s22=0+0.707=0.707_,
 
:s32 = s12+s22=0+0.707=0.707_,
 
:s33 = s13+s23=0+0=0_.
 
:s33 = s13+s23=0+0=0_.
  
  
'''(5)'''&nbsp; The range 2 &#8804; t &#8804; 3 is not covered by either φ1(t) or φ2(t). Therefore, s4(t) provides the new basis function φ3(t). Furthermore, since s4(t) has components only in the range 2 &#8804; t &#8804; 3 and ||s4(t)||=1, we obtain φ3(t)=s4(t) as well as  
+
'''(5)'''&nbsp; The range&nbsp; 2 &#8804; t &#8804; 3&nbsp; is not covered by&nbsp; φ1(t)&nbsp; and&nbsp; φ2(t).  
 +
*Therefore,&nbsp; s4(t)&nbsp; provides the new basis function&nbsp; φ3(t).&nbsp;
 +
*Since s4(t)&nbsp; has components only in the range&nbsp; 2 &#8804; t &#8804; 3 and ||s4(t)||=1,&nbsp; we obtain&nbsp; φ3(t)=s4(t)&nbsp; as well as  
 
:s41=0_,s42=0_,s43=1_.
 
:s41=0_,s42=0_,s43=1_.
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 14:56, 13 July 2022

Specification for the Gram-Schmidt process

For the four signals  s1(t),...,s4(t)  defined by the figure,  the three resulting basis functions  φ1(t)φ2(t)  and  φ3(t)  are to be determined by applying the Gram-Schmidt process,  so that for the signals with   i=1,...,4  can be written:

si(t)=si1φ1(t)+si2φ2(t)+si3φ3(t).
  • In subtask  (1),  let  A2=1 mW  and  T = 1 \ \rm µ s.
  • In the later subtasks,  the amplitude and the time are normalized quantities:   A = 1T = 1.
  • Thus,  both the coefficients  s_{\it ij}  and the basis functions  \varphi_{\it j}(t)  (with  j = 1,\ 2,\ 3)  are dimensionless quantities.



Notes:


Questions

1

What are the units of the following quantities with  A^2 = 1 \, \rm mW  and  T = 1 \, {\rm µ s}?

The basis functions  \varphi_j(t)  are dimensionless.
The basis functions  \varphi_j(t)  have the unit  \rm \sqrt{\rm s}.
The coefficients  s_{\it ij}  are dimensionless.
The coefficients  s_{\it ij}  have the unit  \rm \sqrt{\rm Ws}.

2

Perform the first step of the Gram-Schmidt process.  As for the other tasks,  let  A = 1  and  T = 1 hold.

s_{\rm 11} \ = \

s_{\rm 12} \ = \

s_{\rm 13} \ = \

3

What are the coefficients of the signal  s_2(t)  with  A = 1  and  T = 1?

s_{\rm 21} \ = \

s_{\rm 22} \ = \

s_{\rm 23} \ = \

4

What are the coefficients of the signal  s_3(t)  with  A = 1  and  T = 1?

s_{\rm 31} \ = \

s_{\rm 32} \ = \

s_{\rm 33} \ = \

5

What are the coefficients of the signal  s_4(t)  with  A = 1  and  T = 1?

s_{\rm 41} \ = \

s_{\rm 42} \ = \

s_{\rm 43} \ = \


Solution

(1)  Solutions 2 and 4  are correct:

  • Every orthonormal basis function should have energy  1,  that is,  it must hold:
||\varphi_j(t)||^2 = \int_{-\infty}^{+\infty}\varphi_j(t)^2\,{\rm d} t = 1 \hspace{0.05cm}.
  • For this condition to be satisfied,  the basis function must have unit  \rm \sqrt{\rm s}
  • Another equation to be considered is
s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t).
  • Like the parameter  A,  the signals themselves have the unit  \rm \sqrt{\rm W}
  • Because of the unit  \rm \sqrt{\rm 1/s}  of  \varphi_{ j}(t),  this equation can be satisfied with the correct dimension only if the coefficients  s_{\it ij}  are given with the unit  \rm \sqrt{\rm Ws}.


(2)  The energy of the signal  s_1(t)  is equal to  E_1 = 2

  • It follows for the norm,  the basis function  \varphi_1(t)  and the coefficient  s_{\rm 11}:
||s_1(t)|| = \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm} s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} } \hspace{0.05cm}.
  • The other coefficients are  \underline {s_{\rm 12} = s_{\rm 13} = 0},  since the associated basis functions have not been found at all yet,  while  \varphi_1(t)  is equal in form to  s_1(t).


(3)  Since at most two basis functions are found after considering s_2(t)   ⇒   s_{\rm 23} \hspace{0.15cm} \underline{= 0} holds with certainty.  On the other hand one obtains

  • for the coefficient
||s_1(t)|| = \sqrt{2},\hspace{0.9cm}\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||},\hspace{0.9cm} s_{11} = \sqrt{E_1} = \sqrt{2} \hspace{0.1cm}\hspace{0.15cm}\underline { {\approx 1.414} } \hspace{0.05cm};
  • for the auxiliary function \theta_2(t):
\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = \left\{ \begin{array}{c} 1 - 0.707 \cdot 0.707 = 0.5\\ 0 - 0.707 \cdot (-0.707) = 0.5 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < 1 \\ 1 \le t < 2 \\ \end{array} \hspace{0.05cm};
  • for the second basis function:
\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||},\hspace{0.2cm} ||\theta_2(t)|| = \sqrt{0.5^2 + 0.5^2} = \sqrt{0.5} \approx 0.707
\Rightarrow \hspace{0.3cm} \varphi_2(t) = \left\{ \begin{array}{c} 0.5/0.707 = 0.707\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < 2 \\ 2 \le t < 3 \\ \end{array} \hspace{0.05cm};
  • and finally for the second coefficient
s_{22} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 1 \cdot 0.707 + 0 \cdot 0.707 \hspace{0.1cm}\hspace{0.15cm}\underline { = 0.707} \hspace{0.05cm}.
Gram-Schmidt calculations

The calculations are illustrated in the graph below.


(4)  It can be seen immediately that  s_3(t)  can be expressed as a linear combination of  s_1(t)  and  s_2(t).

s_{3}(t) = -s_{1}(t) + s_{2}(t),
s_{31} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{11} + s_{21} = -1.414 + 0.707 = \hspace{0.1cm}\hspace{0.15cm}\underline {-0.707}\hspace{0.05cm},
s_{32} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{12} + s_{22} = 0 + 0.707 \hspace{0.1cm}\underline {= 0.707}\hspace{0.05cm},
s_{33} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - s_{13} + s_{23} = 0 + 0 \hspace{0.1cm}\underline {= 0}\hspace{0.05cm}.


(5)  The range  2 ≤ t ≤ 3  is not covered by  \varphi_1(t)  and  \varphi_2(t).

  • Therefore,  s_4(t)  provides the new basis function  \varphi_3(t)
  • Since s_4(t)  has components only in the range  2 ≤ t ≤ 3 and ||s_4(t)|| = 1,  we obtain  \varphi_3(t) = s_4(t)  as well as
s_{41} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0}, \hspace{0.2cm}s_{42} \hspace{0.1cm}\hspace{0.15cm}\underline {= 0}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1} \hspace{0.05cm}.