Difference between revisions of "Aufgaben:Exercise 4.2: AM/PM Oscillations"

From LNTwww
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1997__Dig_A_4_2.png|right|frame|AM/PM-Schwingungen]]
+
[[File:P_ID1997__Dig_A_4_2.png|right|frame|Two possible AM/PM oscillations]]
Wir betrachten die Signalmenge  $\{s_i(t)\}$  mit der Laufvariablen  $i = 1, \ \text{...} \, M$. Alle Signale  $s_i(t)$  können in gleicher Weise dargestellt werden:
+
We consider the signal set   $\{s_i(t)\}$   with the indexing variable  $i = 1, \ \text{...} \, M$.  All signals  $s_i(t)$  can be represented in the same way:
 
:$$s_i(t) =  
 
:$$s_i(t) =  
 
\left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\
 
\left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
Die Signaldauer&nbsp; $T$&nbsp; ist dabei ein ganzzahliges Vielfaches von&nbsp; $1/f_{\rm T}$, wobei&nbsp; $f_{\rm T}$&nbsp; die Signalfrequenz (Trägerfrequenz) angibt.
+
The signal duration&nbsp; $T$&nbsp; is an integer multiple of&nbsp; $1/f_{\rm T}$,&nbsp; where&nbsp; $f_{\rm T}$&nbsp; is the signal frequency&nbsp; ("carrier frequency").
  
*Für die Skizze beträgt die Dauer der energiebegrenzten Signale jeweils&nbsp; $T = 4/f_{\rm T}$, das heißt, man erkennt jeweils genau vier Schwingungen innerhalb von&nbsp; $T$.  
+
*For the sketch,&nbsp; the duration of the energy-limited signals is&nbsp; $T = 4/f_{\rm T}$,&nbsp; i.e. exactly four oscillations are recognized within&nbsp; $T$&nbsp; in each case.
*Die einzelnen Signale&nbsp; $s_i(t)$&nbsp; unterscheiden sich in der Amplitude &nbsp;$(A_i)$&nbsp; und/oder der Phase &nbsp;$(\phi_i)$.  
 
  
 +
*The individual signals&nbsp; $s_i(t)$&nbsp; differ in amplitude &nbsp;$(A_i)$&nbsp; and/or phase &nbsp;$(\phi_i)$.
  
Für die beiden ersten (in der Grafik dargestellten) Signale gilt:
+
 
 +
For the  two signals&nbsp; (shown in the graph)&nbsp; holds:
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t )  \hspace{0.05cm},$$
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t )  \hspace{0.05cm},$$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4)  \hspace{0.05cm}. $$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4)  \hspace{0.05cm}. $$
  
Beschränkt man sich zunächst auf diese beiden Signale&nbsp; $s_1(t)$&nbsp; und $s_2(t)$, so kann man diese durch die Basisfunktionen&nbsp; $\varphi_1(t)$&nbsp; und&nbsp; $\varphi_2(t)$&nbsp; vollständig beschreiben. Diese sind orthonormal zueinander, das heißt, unter Berücksichtigung der Zeitbegrenzung auf&nbsp; $T$&nbsp; gilt:
+
If we first restrict ourselves to these two signals&nbsp; $s_1(t)$&nbsp; and&nbsp; $s_2(t)$,&nbsp; they can be completely described by the basis functions&nbsp; $\varphi_1(t)$&nbsp; and&nbsp; $\varphi_2(t)$.&nbsp; These are orthonormal to each other,&nbsp; that is,&nbsp; taking into account the time constraint on&nbsp; $T$&nbsp; holds:
:$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm}, \hspace{0.2cm}
+
:$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm},$$
  \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0  
+
:$$ \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Mit diesen Basisfunktionen lassen sich die beiden Signale wie folgt darstellen:
+
With these basis functions,&nbsp; the two signals can be represented as follows:
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t)  \hspace{0.05cm},$$
 
:$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t)  \hspace{0.05cm},$$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  
In der Teilaufgabe '''(7)''' soll überprüft werden, ob sich alle Signale&nbsp; $s_i(t)$&nbsp; gemäß der obigen Definition $($mit beliebiger Amplitude&nbsp; $A_i$&nbsp; und beliebiger Phase &nbsp;$\phi_i)$&nbsp; durch die folgende Gleichung beschreiben lassen:
+
In subtask&nbsp; '''(7)'''&nbsp; we want to check whether all signals&nbsp; $s_i(t)$&nbsp; according to the above definition &nbsp; $($with arbitrary amplitude&nbsp; $A_i$&nbsp; and arbitrary phase &nbsp;$\phi_i)$ &nbsp; can be described by the following equation:
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  
Die Basisfunktionen&nbsp; $\varphi_1(t)$&nbsp; und&nbsp; $\varphi_2(t)$&nbsp; sollen hier durch das&nbsp; [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram&ndash;Schmidt&ndash;Verfahren]]&nbsp; gefunden werden, das im Theorieteil ausführlich beschrieben wurde. Die erforderlichen Gleichungen sind hier nochmals zusammengestellt:
+
The basis functions&nbsp; $\varphi_1(t)$&nbsp; and&nbsp; $\varphi_2(t)$&nbsp; are to be found here by the &nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram&ndash;Schmidt process"]], &nbsp; which was described in detail in the theory section.&nbsp; The required equations are summarized here again:
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm with}\hspace{0.4cm}
 
s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t}  
 
s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t}  
 
\hspace{0.05cm},\hspace{0.4cm}
 
\hspace{0.05cm},\hspace{0.4cm}
Line 45: Line 46:
  
  
 
+
Notes:  
''Hinweise:''
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
*Die Aufgabe gehört zum  Kapitel&nbsp;  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].
+
 +
* For abbreviation,&nbsp; use the energy&nbsp; $E = 1/2 \cdot A^2 \cdot T$.
 
   
 
   
* Verwenden Sie zur Abkürzung die Energie&nbsp; $E = 1/2 \cdot A^2 \cdot T$.
+
* Furthermore,&nbsp; the following trigonometric relation is given: &nbsp;  
* Desweiteren ist folgende trigonometrische Beziehung gegeben: &nbsp;  
 
 
:$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$
 
:$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Energie und die 2&ndash;Norm des Signals &nbsp;$s_1(t)$, ausgedrückt mit $E$?
+
{What is the energy and the&nbsp; "2&ndash;norm"&nbsp; of the signal &nbsp;$s_1(t)$,&nbsp; expressed by&nbsp; $E$?
 
|type="{}"}
 
|type="{}"}
 
$E_1\ = \ $ { 1 3% } $\ \cdot E$
 
$E_1\ = \ $ { 1 3% } $\ \cdot E$
 
$||s_1(t)|| \ = \ $ { 1 3% } $\ \cdot \sqrt{E}$
 
$||s_1(t)|| \ = \ $ { 1 3% } $\ \cdot \sqrt{E}$
  
{Wie lautet die Basisfunktion&nbsp; $\varphi_1(t)$&nbsp; nach Gram&ndash;Schmidt?
+
{What is the Gram&ndash;Schmidt basis function&nbsp; $\varphi_1(t)$?&nbsp;  
 
|type="[]"}
 
|type="[]"}
 
- $\varphi_1(t) = \sqrt{E} \cdot {\rm cos}(2\pi f_{\rm T}t)$,
 
- $\varphi_1(t) = \sqrt{E} \cdot {\rm cos}(2\pi f_{\rm T}t)$,
Line 67: Line 68:
 
+ $\varphi_1(t) = \sqrt{2/T} \cdot {\rm cos}(2\pi f_{\rm T}t)$.
 
+ $\varphi_1(t) = \sqrt{2/T} \cdot {\rm cos}(2\pi f_{\rm T}t)$.
  
{Welcher Zusammenhang besteht zwischen&nbsp; $s_1(t)$&nbsp; und&nbsp; $\varphi_1(t)$?
+
{What is the relationship between&nbsp; $s_1(t)$&nbsp; and&nbsp; $\varphi_1(t)$?
 
|type="[]"}
 
|type="[]"}
 
+ $s_1(t) = \sqrt{E} \cdot \varphi_1(t)$,
 
+ $s_1(t) = \sqrt{E} \cdot \varphi_1(t)$,
Line 73: Line 74:
 
- $s_1(t) = \sqrt{2/T}  \cdot \varphi_1(t)$.
 
- $s_1(t) = \sqrt{2/T}  \cdot \varphi_1(t)$.
  
{Wie lautet das innere Produkt&nbsp; $s_{\rm 21} = &#9001; s_2(t) \cdot \varphi_1(t)&#9002;$?
+
{What is the&nbsp; "inner product"&nbsp; $s_{\rm 21} = &#9001; s_2(t) \cdot \varphi_1(t)&#9002;$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 21} \ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 21} \ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
  
{Wie lautet die Hilfsfunktion&nbsp; $\theta_2(t)$?
+
{What is the auxiliary function&nbsp; $\theta_2(t)$?
 
|type="[]"}
 
|type="[]"}
 
- $\theta_2(t) = +\sqrt{2} \cdot A \cdot {\rm sin}(2\pi f_{\rm T}t)$,
 
- $\theta_2(t) = +\sqrt{2} \cdot A \cdot {\rm sin}(2\pi f_{\rm T}t)$,
Line 83: Line 84:
 
- $\theta_2(t) = \sqrt{2/T} \cdot {\rm sin}(2\pi f_{\rm T}t)$.
 
- $\theta_2(t) = \sqrt{2/T} \cdot {\rm sin}(2\pi f_{\rm T}t)$.
  
{Geben Sie die Koeffizienten von&nbsp; $s_2(t) = s_{\rm 21} \cdot \varphi_1(t) + s_{\rm 22} \cdot \varphi_2(t)$&nbsp; an.
+
{Give the coefficients of &nbsp; $s_2(t) = s_{\rm 21} \cdot \varphi_1(t) + s_{\rm 22} \cdot \varphi_2(t)$.&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 21}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 21}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 22}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 22}\ = \ $ { 1.414 3% } $\ \cdot \sqrt{E}$
  
{Welche der Aussagen gelten allgemen für die Basisfunktionen der Signalmenge&nbsp; $\{s_i(t)\}$ mit $i = 1, \ \text{ ...} \ , M$, falls &nbsp;$M \gg 2$?
+
{Which of the statements are generally true for the basis functions of the signal set&nbsp; $\{s_i(t)\}$&nbsp; with&nbsp; $i = 1, \ \text{ ...} \ , M$,&nbsp; if &nbsp;$M \gg 2$?
 
|type="[]"}
 
|type="[]"}
- Die Anzahl der Basisfunktionen ist stets&nbsp; $N = M$.
+
- The number of basis functions is always&nbsp; $N = M$.
+ Die Anzahl der Basisfunktionen ist stets&nbsp; $N = 2$.
+
+ The number of basis functions is always&nbsp; $N = 2$.
+ Mögliche Basisfunktionen sind Cosinus und (Minus&ndash;)Sinus.
+
+ Possible basis functions are cosine and (minus) sine.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Energie kann nach folgender Gleichung berechnet werden:
+
'''(1)'''&nbsp; The energy can be calculated using the following equation:
 
:$$E_{1}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}   
 
:$$E_{1}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}   
 
\int_{0}^{T}A^2 \cdot \cos^2(2\pi f_{\rm T}t )\, {\rm d} t = \frac{A^2 \cdot T}{2}\hspace{0.05cm}+\hspace{0.05cm}
 
\int_{0}^{T}A^2 \cdot \cos^2(2\pi f_{\rm T}t )\, {\rm d} t = \frac{A^2 \cdot T}{2}\hspace{0.05cm}+\hspace{0.05cm}
Line 103: Line 104:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Hierbei ist berücksichtigt, dass $T$ ein geradzahliges Vielfaches von $1/f_{\rm T}$ ist, so dass das zweite Integral verschwindet. Weiter gilt:
+
*Here it is considered that&nbsp; $T$&nbsp; is an even multiple of&nbsp; $1/f_{\rm T}$,&nbsp; so the second integral vanishes.  
 +
 
 +
*Further:
 
:$$||s_1(t)|| = \sqrt{E_1} = \sqrt{E} = \hspace{0.1cm}\hspace{0.15cm}\underline{1 \cdot\sqrt{E}}
 
:$$||s_1(t)|| = \sqrt{E_1} = \sqrt{E} = \hspace{0.1cm}\hspace{0.15cm}\underline{1 \cdot\sqrt{E}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>: Die Basisfunktion $\varphi_1(t)$ ist formgleich mit $s_1(t)$, wobei gilt:
+
'''(2)'''&nbsp; <u>Solution 3</u>&nbsp; is correct:&nbsp; The basis function&nbsp; $\varphi_1(t)$&nbsp; is equal in form to&nbsp; $s_1(t)$,&nbsp; where holds:
 
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{E}}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{1/2 \cdot A^2 \cdot T}} = \sqrt{{2}/{T}}
 
:$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{E}}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{1/2 \cdot A^2 \cdot T}} = \sqrt{{2}/{T}}
 
\cdot \cos(2\pi f_{\rm T}t )
 
\cdot \cos(2\pi f_{\rm T}t )
Line 114: Line 117:
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>, da entsprechend der unter '''(2)''' angegebenen Gleichung gilt:
+
'''(3)'''&nbsp; <u>Solution 1</u>&nbsp; is correct&nbsp; since according to the equation given in&nbsp; '''(2)''':
 
:$$s_1(t) = ||s_1(t)|| \cdot \varphi_1(t) =  \sqrt{E} \cdot \varphi_1(t)
 
:$$s_1(t) = ||s_1(t)|| \cdot \varphi_1(t) =  \sqrt{E} \cdot \varphi_1(t)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Mit dem Signal $s_2(t)$ entsprechend der Angabe, der Basisfunktion $\varphi_1(t)$ gemäß Teilaufgabe '''(2)''' sowie der angegebenen trigonometrischen Beziehung erhält man:
+
'''(4)'''&nbsp; Using the signal&nbsp; $s_2(t)$&nbsp; according to the given information,&nbsp; the basis function&nbsp; $\varphi_1(t)$&nbsp; according to subtask&nbsp; '''(2)'''&nbsp; and the given trigonometric relation we get:
 
:$$s_{21}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} =  
 
:$$s_{21}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} =  
 
\int_{0}^{T}2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) \cdot \sqrt{{2}/{T}}
 
\int_{0}^{T}2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) \cdot \sqrt{{2}/{T}}
Line 129: Line 132:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Der zweite Anteil ergibt den Wert $0$ (Orthogonalität). Der erste Anteil liefert:
+
*The second component yields the value&nbsp; $0$&nbsp; (orthogonality).&nbsp; The first component yields:
 
:$$s_{21}  = \sqrt{\frac{8A^2}{T}}\cdot \frac{1}{\sqrt{2}}\cdot \frac{T}{2} = \sqrt{A^2 \cdot T} = \sqrt{2E} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot \sqrt{E}}
 
:$$s_{21}  = \sqrt{\frac{8A^2}{T}}\cdot \frac{1}{\sqrt{2}}\cdot \frac{T}{2} = \sqrt{A^2 \cdot T} = \sqrt{2E} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot \sqrt{E}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Entsprechend dem Gram&ndash;Schmidt&ndash;Verfahren erhält man
+
'''(5)'''&nbsp; According to the Gram&ndash;Schmidt process,&nbsp; we obtain
 
:$$\theta_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm} =  
 
:$$\theta_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm} =  
 
  2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) - \sqrt{A^2 \cdot T}  
 
  2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) - \sqrt{A^2 \cdot T}  
Line 144: Line 147:
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
  
*Mit $\cos {(\pi/4)} = \sin (\pi/4) =\sqrt{0.5}$ folgt daraus:
+
*With&nbsp; $\cos {(\pi/4)} = \sin (\pi/4) =\sqrt{0.5}$&nbsp; it follows:
 
:$$\theta_2(t) = - \sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t )
 
:$$\theta_2(t) = - \sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t )
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Richtig ist demnach der <u>Lösungsvorschlag 2</u>.
+
*Therefore,&nbsp; <u>solution 2</u> is correct.
  
  
  
'''(6)'''&nbsp; Analog zur Teilaufgabe '''(2)''' ergibt sich die orthonormale Basisfunktion $\varphi_2(t)$ zu
+
'''(6)'''&nbsp; Analogous to subtask&nbsp; '''(2)''',&nbsp; the orthonormal basis function&nbsp; $\varphi_2(t)$&nbsp; is given by
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||} = - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )
 
:$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||} = - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Damit kann das Signal $s_2(t)$  mit $s_{21}$ entsprechend Teilaufgabe '''(4)''' wie folgt dargestellt werden:
+
*Thus,&nbsp; the signal&nbsp; $s_2(t)$&nbsp; can be represented by&nbsp; $s_{21}$&nbsp; according to subtask&nbsp; '''(4)'''&nbsp; as follows:
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}, \hspace{0.2cm}s_{21} = \underline{ = 1.414 \cdot \sqrt {E}}\hspace{0.05cm},$$
 
:$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}, \hspace{0.2cm}s_{21} = \underline{ = 1.414 \cdot \sqrt {E}}\hspace{0.05cm},$$
 
:$$s_{22}\hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac{\theta_2(t)}{\varphi_2(t)} = \frac{-\sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t )}
 
:$$s_{22}\hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac{\theta_2(t)}{\varphi_2(t)} = \frac{-\sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t )}
Line 162: Line 165:
  
  
'''(7)'''&nbsp; Wir betrachten sehr viele energiebegrenzte Signale ($M \gg 2$) folgender Form:
+
'''(7)'''&nbsp; We consider very many energy-limited signals&nbsp; $(M \gg 2)$&nbsp; of the following form:
 
:$$s_i(t)=  
 
:$$s_i(t)=  
 
\left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\
 
\left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
Die Laufvariable kann dabei die Werte $i = 1, 2, \ \text{...} \ , M$ annehmen. Dann gilt:
+
The indexing variable can take the values&nbsp; $i = 1, 2, \ \text{...} \ , M$.&nbsp; Then holds:
* Alle $M$ Signale lassen sich durch nur $N = 2$ Basisfunktionen vollständig beschreiben:
+
* All&nbsp; $M$&nbsp; signals can be completely described by only&nbsp; $N = 2$&nbsp; basis functions:
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.  $$
 
:$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.  $$
* Geht man nach dem Gram&ndash;Schmidt&ndash;Verfahren vor, so erhält man für die beiden Basisfunktionen
+
 
 +
* If one proceeds according to the Gram&ndash;Schmidt process,&nbsp; one obtains for the two basis functions
 
:$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1)\hspace{0.05cm},\hspace{0.5cm}
 
:$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1)\hspace{0.05cm},\hspace{0.5cm}
 
\varphi_2(t) = \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1 \pm {\pi}/{2})\hspace{0.05cm}.$$
 
\varphi_2(t) = \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1 \pm {\pi}/{2})\hspace{0.05cm}.$$
* Das Vorzeichen im Argument der zweiten Cosinusfunktion ($&plusmn; \pi/2$) ist nicht eindeutig. Vielmehr hängt auch das Vorzeichen von $s_{i 2}$ davon ab, ob bei $\varphi_2(t)$ das Pluszeichen oder das Minuszeichen verwendet wurde.
+
 
* Mögliche Basisfunktionen, die dann zu anderen Koeffizienten führen, sind aber auch:
+
* The sign in the argument of the second cosine function&nbsp; $(&plusmn; \pi/2)$&nbsp; is not unique.&nbsp; Rather,&nbsp; the sign of&nbsp; $s_{i 2}$&nbsp; also depends on whether the plus sign or the minus sign was used for&nbsp; $\varphi_2(t)$.
 +
 
 +
* However,&nbsp; possible basis functions that then lead to other coefficients are also:
 
:$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},\hspace{0.5cm}
 
:$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},\hspace{0.5cm}
 
\varphi_2(t)  \pm \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}.$$
 
\varphi_2(t)  \pm \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}.$$
  
Richtig sind also die <u>Lösungsvorschläge 2 und 3</u>.
+
&rArr; &nbsp; So the&nbsp; <u>solutions 2 and 3</u>&nbsp; are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Basisfunktionen & Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 17:11, 13 July 2022

Two possible AM/PM oscillations

We consider the signal set   $\{s_i(t)\}$   with the indexing variable  $i = 1, \ \text{...} \, M$.  All signals  $s_i(t)$  can be represented in the same way:

$$s_i(t) = \left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

The signal duration  $T$  is an integer multiple of  $1/f_{\rm T}$,  where  $f_{\rm T}$  is the signal frequency  ("carrier frequency").

  • For the sketch,  the duration of the energy-limited signals is  $T = 4/f_{\rm T}$,  i.e. exactly four oscillations are recognized within  $T$  in each case.
  • The individual signals  $s_i(t)$  differ in amplitude  $(A_i)$  and/or phase  $(\phi_i)$.


For the two signals  (shown in the graph)  holds:

$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} A \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm},$$
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2A \cdot \cos(2\pi f_{\rm T}t + \pi/4) \hspace{0.05cm}. $$

If we first restrict ourselves to these two signals  $s_1(t)$  and  $s_2(t)$,  they can be completely described by the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$.  These are orthonormal to each other,  that is,  taking into account the time constraint on  $T$  holds:

$$\int_{0}^{T}\varphi_1^2(t) \, {\rm d} t = \int_{0}^{T}\varphi_2^2(t) \, {\rm d} t = 1 \hspace{0.05cm},$$
$$ \int_{0}^{T}\varphi_1(t) \cdot \varphi_2(t)\, {\rm d} t = 0 \hspace{0.05cm}.$$

With these basis functions,  the two signals can be represented as follows:

$$s_1(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{11} \cdot \varphi_1(t) \hspace{0.05cm},$$
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}. $$

In subtask  (7)  we want to check whether all signals  $s_i(t)$  according to the above definition   $($with arbitrary amplitude  $A_i$  and arbitrary phase  $\phi_i)$   can be described by the following equation:

$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$

The basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  are to be found here by the   "Gram–Schmidt process",   which was described in detail in the theory section.  The required equations are summarized here again:

$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}\hspace{0.4cm}{\rm with}\hspace{0.4cm} s_{11} = ||s_1(t)|| = \sqrt{\int_{0}^{T}s_1^2(t) \, {\rm d} t} \hspace{0.05cm},\hspace{0.4cm} s_{21} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = \int_{0}^{T}s_2(t) \cdot \varphi_1(t)\, {\rm d} t \hspace{0.05cm},$$
$$\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm}, \hspace{0.2cm} \varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||}\hspace{0.05cm}.$$



Notes:

  • For abbreviation,  use the energy  $E = 1/2 \cdot A^2 \cdot T$.
  • Furthermore,  the following trigonometric relation is given:  
$$\cos(\alpha \pm \beta) = \cos(\alpha )\cdot \cos(\beta) \mp \sin(\alpha )\cdot \sin(\beta)\hspace{0.05cm}.$$


Questions

1

What is the energy and the  "2–norm"  of the signal  $s_1(t)$,  expressed by  $E$?

$E_1\ = \ $

$\ \cdot E$
$||s_1(t)|| \ = \ $

$\ \cdot \sqrt{E}$

2

What is the Gram–Schmidt basis function  $\varphi_1(t)$? 

$\varphi_1(t) = \sqrt{E} \cdot {\rm cos}(2\pi f_{\rm T}t)$,
$\varphi_1(t) = \cos(2\pi f_{\rm T}t)$,
$\varphi_1(t) = \sqrt{2/T} \cdot {\rm cos}(2\pi f_{\rm T}t)$.

3

What is the relationship between  $s_1(t)$  and  $\varphi_1(t)$?

$s_1(t) = \sqrt{E} \cdot \varphi_1(t)$,
$s_1(t) = A \cdot \varphi_1(t)$,
$s_1(t) = \sqrt{2/T} \cdot \varphi_1(t)$.

4

What is the  "inner product"  $s_{\rm 21} = 〈 s_2(t) \cdot \varphi_1(t)〉$?

$s_{\rm 21} \ = \ $

$\ \cdot \sqrt{E}$

5

What is the auxiliary function  $\theta_2(t)$?

$\theta_2(t) = +\sqrt{2} \cdot A \cdot {\rm sin}(2\pi f_{\rm T}t)$,
$\theta_2(t) =-\sqrt{2} \cdot A \cdot {\rm sin}(2\pi f_{\rm T}t)$,
$\theta_2(t) = \sqrt{2/T} \cdot {\rm sin}(2\pi f_{\rm T}t)$.

6

Give the coefficients of   $s_2(t) = s_{\rm 21} \cdot \varphi_1(t) + s_{\rm 22} \cdot \varphi_2(t)$. 

$s_{\rm 21}\ = \ $

$\ \cdot \sqrt{E}$
$s_{\rm 22}\ = \ $

$\ \cdot \sqrt{E}$

7

Which of the statements are generally true for the basis functions of the signal set  $\{s_i(t)\}$  with  $i = 1, \ \text{ ...} \ , M$,  if  $M \gg 2$?

The number of basis functions is always  $N = M$.
The number of basis functions is always  $N = 2$.
Possible basis functions are cosine and (minus) sine.


Solution

(1)  The energy can be calculated using the following equation:

$$E_{1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{0}^{T}A^2 \cdot \cos^2(2\pi f_{\rm T}t )\, {\rm d} t = \frac{A^2 \cdot T}{2}\hspace{0.05cm}+\hspace{0.05cm} \frac{A^2 }{2}\int_{0}^{T} \cos(4\pi f_{\rm T}t )\, {\rm d} t = \frac{A^2 \cdot T}{2} \hspace{0.05cm}\underline{= 1 \cdot E} \hspace{0.05cm}. $$
  • Here it is considered that  $T$  is an even multiple of  $1/f_{\rm T}$,  so the second integral vanishes.
  • Further:
$$||s_1(t)|| = \sqrt{E_1} = \sqrt{E} = \hspace{0.1cm}\hspace{0.15cm}\underline{1 \cdot\sqrt{E}} \hspace{0.05cm}.$$


(2)  Solution 3  is correct:  The basis function  $\varphi_1(t)$  is equal in form to  $s_1(t)$,  where holds:

$$\varphi_1(t) = \frac{s_1(t)}{||s_1(t)||}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{E}}= \frac{A \cdot \cos(2\pi f_{\rm T}t )}{\sqrt{1/2 \cdot A^2 \cdot T}} = \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm}.$$


(3)  Solution 1  is correct  since according to the equation given in  (2):

$$s_1(t) = ||s_1(t)|| \cdot \varphi_1(t) = \sqrt{E} \cdot \varphi_1(t) \hspace{0.05cm}.$$


(4)  Using the signal  $s_2(t)$  according to the given information,  the basis function  $\varphi_1(t)$  according to subtask  (2)  and the given trigonometric relation we get:

$$s_{21} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.1cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = \int_{0}^{T}2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) \cdot \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\, {\rm d} t = $$
$$\Rightarrow \hspace{0.3cm}s_{21} = \sqrt{\frac{8A^2}{T}}\cdot \int_{0}^{T}\cos({\pi}/{4}) \cdot \cos^2(2\pi f_{\rm T}t )\, {\rm d} t \hspace{0.1cm}- \sqrt{\frac{8A^2}{T}}\cdot \int_{0}^{T}\sin({\pi}/{4}) \cdot \sin(2\pi f_{\rm T}t )\cdot \cos(2\pi f_{\rm T}t )\, {\rm d} t \hspace{0.05cm}. $$
  • The second component yields the value  $0$  (orthogonality).  The first component yields:
$$s_{21} = \sqrt{\frac{8A^2}{T}}\cdot \frac{1}{\sqrt{2}}\cdot \frac{T}{2} = \sqrt{A^2 \cdot T} = \sqrt{2E} \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot \sqrt{E}} \hspace{0.05cm}.$$


(5)  According to the Gram–Schmidt process,  we obtain

$$\theta_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_2(t) - s_{21} \cdot \varphi_1(t)\hspace{0.05cm} = 2A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{4}) - \sqrt{A^2 \cdot T} \cdot \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t ) $$
$$\Rightarrow \hspace{0.3cm}\theta_2(t) = 2A \cdot \cos({\pi}/{4})\cdot \cos(2\pi f_{\rm T}t )\hspace{0.1cm} - \hspace{0.1cm} 2A \cdot \sin({\pi}/{4})\cdot \sin(2\pi f_{\rm T}t )\hspace{0.1cm} - \sqrt{2} \cdot A \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm}. $$
  • With  $\cos {(\pi/4)} = \sin (\pi/4) =\sqrt{0.5}$  it follows:
$$\theta_2(t) = - \sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t ) \hspace{0.05cm}.$$
  • Therefore,  solution 2 is correct.


(6)  Analogous to subtask  (2),  the orthonormal basis function  $\varphi_2(t)$  is given by

$$\varphi_2(t) = \frac{\theta_2(t)}{||\theta_2(t)||} = - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t ) \hspace{0.05cm}.$$
  • Thus,  the signal  $s_2(t)$  can be represented by  $s_{21}$  according to subtask  (4)  as follows:
$$s_2(t)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} s_{21} \cdot \varphi_1(t) + s_{22} \cdot \varphi_2(t) \hspace{0.05cm}, \hspace{0.2cm}s_{21} = \underline{ = 1.414 \cdot \sqrt {E}}\hspace{0.05cm},$$
$$s_{22}\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{\theta_2(t)}{\varphi_2(t)} = \frac{-\sqrt{2} \cdot A \cdot \sin(2\pi f_{\rm T}t )} {-\sqrt{2/T}\cdot \sin(2\pi f_{\rm T}t )} = \sqrt{2} \cdot \sqrt{1/2 \cdot A^2 \cdot T}\hspace{0.05cm} \underline{ = 1.414 \cdot \sqrt {E}}\hspace{0.05cm}.$$


(7)  We consider very many energy-limited signals  $(M \gg 2)$  of the following form:

$$s_i(t)= \left\{ \begin{array}{c} A_i \cdot \cos(2\pi f_{\rm T}t + \phi_i) \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

The indexing variable can take the values  $i = 1, 2, \ \text{...} \ , M$.  Then holds:

  • All  $M$  signals can be completely described by only  $N = 2$  basis functions:
$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}. $$
  • If one proceeds according to the Gram–Schmidt process,  one obtains for the two basis functions
$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1)\hspace{0.05cm},\hspace{0.5cm} \varphi_2(t) = \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t + \phi_1 \pm {\pi}/{2})\hspace{0.05cm}.$$
  • The sign in the argument of the second cosine function  $(± \pi/2)$  is not unique.  Rather,  the sign of  $s_{i 2}$  also depends on whether the plus sign or the minus sign was used for  $\varphi_2(t)$.
  • However,  possible basis functions that then lead to other coefficients are also:
$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},\hspace{0.5cm} \varphi_2(t) \pm \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}.$$

⇒   So the  solutions 2 and 3  are correct.