Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.16: Block Error Probability Bounds for AWGN"

From LNTwww
 
(40 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Schranken für die Blockfehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
  
[[File:P_ID2414__KC_A_1_15.png|right|frame|Funktion Q(x) und Näherungen ]]
+
[[File:P_ID2414__KC_A_1_15.png|right|frame|Function&nbsp; Q(x)&nbsp; and approximations;<br>it holds:&nbsp; Qu(x)Q(x)Qo(x) ]]
  
Wir gehen von der folgenden Konstellation aus:
+
We assume the following constellation:
*ein linearer Blockcode mit der Coderate R=k/n und dem Distanzspektrum {Wi}, i=1, ... ,n,
+
*A linear block code with code rate&nbsp; R=k/n&nbsp; and distance spectrum&nbsp; $\{W_i\}, \ i = 1, \ \text{...} \ , n$,
*ein AWGN–Kanal, gekennzeichnet durch „EB/N0” &nbsp;⇒&nbsp; umrechenbar in die Rauschleistung σ2,
 
*ein Empfänger, basierend auf ''Soft Decision'' sowie dem ''Maximum–Likelihood–Kriterium''.
 
  
 +
*an AWGN channel characterized by&nbsp; EB/N0 &nbsp; ⇒ &nbsp; convertible to noise power&nbsp; σ2,
  
Unter der für die gesamte Aufgabe gültigen Annahme, dass stets das Nullwort x_1=(0,0,...,0) gesendet wird, gilt für die [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit|„paarweise Fehlerwahrscheinlichkeit”]] mit einem anderen Codewort $\underline{x}_{l} (l = 2, ... , 2^k):$
+
*a receiver based on&nbsp; "soft decision"&nbsp; as well as the&nbsp; "maximum likelihood criterion".
 +
 
 +
 
 +
Under the assumption valid for the entire exercise that always the zero-word&nbsp; $\underline{x}_{1} = (0, 0, \text{... } \ , 0)$&nbsp; is sent, the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"pairwise error probability"]]&nbsp; with a different code word&nbsp; $\underline{x}_{l} (l = 2,\ \text{...} \ , 2^k)$:
  
 
:Pr[x_1x_l]=Q(wH(x_l)/σ2).
 
:Pr[x_1x_l]=Q(wH(x_l)/σ2).
 
   
 
   
Die Herleitung dieser Beziehung finden Sie in [Liv10]. In dieser Gleichung wurden verwendet:
+
The derivation of this relation can be found in&nbsp; [Liv10].&nbsp; Used in this equation are:
*die komplementäre Gaußsche Fehlerfunktion Q(x),
+
*the&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error function"]]&nbsp; Q(x),
*das [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]] wH(x_l) des Codewortes x_l,
+
 
*die AWGN–Rauschleistung $\sigma^2 = (2 · R · E_{\rm B}/N_{0})^{–1}.$  
+
*the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]&nbsp; wH(x_l)&nbsp; of the code word&nbsp; x_l,
 +
 
 +
*the&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_power_limitation|"AWGN noise power"]]&nbsp; $\sigma^2 = (2 \cdot R \cdot E_{\rm B}/N_{0})^{-1}.$  
  
  
Damit lassen sich verschiedene Schranken für die Blockfehlerwahrscheinlichkeit angeben:
+
This allows various bounds to be specified for the block error probability:
  
*die sogenannte [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit|Union Bound]]:
+
*the so called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"Union Bound"]]&nbsp; (UB):
 
   
 
   
:p1=2kl=2Pr[x_1x_l]=2kl=2Q(wH(x_l)/σ2),
+
:$$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l \hspace{0.05cm}= \hspace{0.05cm}2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
  
*die so genannte [http://www.eit.lth.se/fileadmin/eit/courses/ett051/Laborationer/Lab2ManualHt12009.pdf Truncated Union Bound] (TUB):
+
*the so called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Bounds_for_the_.287.2C_4.2C_3.29_Hamming_code_at_the_AWGN_channel|"Truncated Union Bound"]]&nbsp; $\rm  (TUB)$:
 
   
 
   
 
:p2=WdminQ(dmin/σ2),
 
:p2=WdminQ(dmin/σ2),
  
*die [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya|Bhattacharyya–Schranke:]]
+
*the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|"Bhattacharyya Bound"]]:
 
   
 
   
:$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm mit}\hspace{0.15cm} \beta = {\rm exp}\left [ - 1/(2\sigma^2) \right ] \hspace{0.05cm}.$$
+
:$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm with}\hspace{0.15cm} \beta = {\rm e}^{ - 1/(2\sigma^2) } \hspace{0.05cm}.$$
  
In diesem Fall ist das Distanzspektrum {Wi} durch die Gewichtsfunktion zu ersetzen:
+
:In this case,&nbsp; replace the distance spectrum&nbsp; {Wi}&nbsp; with the weight enumerator function:
  
 
:{Wi}W(X)=ni=0WiXi=W0+W1X+W2X2+...+WnXn.
 
:{Wi}W(X)=ni=0WiXi=W0+W1X+W2X2+...+WnXn.
 
   
 
   
Beim Übergang von der ''Union Bound'' p1 zur Schranke p3 wird unter Anderem die Funktion Q(x) durch die ''Chernoff–Rubin–Schranke'' QCR(x) ersetzt. Beide Funktionen sind in obigerer Grafik dargestellt (rote bzw. grüne Kurve).
+
In the transition from the&nbsp; "Union Bound"&nbsp; p1&nbsp; to the more imprecise bound&nbsp; p3&nbsp; among others
 +
*the function&nbsp; Q(x)&nbsp; is replaced by the&nbsp; [https://en.wikipedia.org/wiki/Chernoff_bound "Chernoff-Rubin bound"]&nbsp; QCR(x).  
 +
 
 +
*Both functions are shown in the above graph&nbsp; (red and green curve, resp.).
 +
 
 +
 
 +
In the&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]]&nbsp; the relationship between these functions is evaluated numerically and referenced to the bounds&nbsp; Qo(x) and Qu(x)&nbsp; which are also drawn in the above graph.
  
In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird der Zusammenhang zwischen diesen Funktionen numerisch ausgewertet und Bezug genommen zu den Schranken Qo(x) und Qu(x), die in obiger Grafik ebenfalls eingezeichnet sind.
 
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit|Schranken für die Blockfehlerwahrscheinlichkeit]]
 
* Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
* Weiter verweisen wir auf folgendes Flash–Modul:
 
# Komplimentäre Gaußsche Fehlerfunktion (Dateigröße: 235 kB)
 
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability|"Bounds for block error probability"]].
  
 +
* The above cited reference&nbsp; "[Liv10]"&nbsp; refers to the lecture manuscript "Liva, G.:&nbsp; Channel Coding.&nbsp;  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."
  
===Fragebogen===
+
* Further we refer to the interactive HTML5/JavaScript applet&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Gleichung gilt für die ''Union Bound''?
+
{Which equation applies to the&nbsp; "Union Bound"?
 
|type="[]"}
 
|type="[]"}
- p1=2kl=2Wl·Q[(l/σ2)0.5],
+
- $p_{1} = \sum_{l\hspace{0.05cm}=\hspace{0.05cm}2}^{2^k} W_{l} · {\rm Q}\big[(l/\sigma^2)^{0.5}\big],$
+ $p_{1} = \sum_{i=1}^{n} W_{i} · {\rm Q}[(i/\sigma^2)^{0.5}],$
+
+ $p_{1} = \sum_{i\hspace{0.05cm}=\hspace{0.05cm}1}^{n} W_{i} · {\rm Q}\big[(i/\sigma^2)^{0.5}\big].$
  
{Geben Sie die Union Bound für den (8,4,4)–Code und $\sigma = 1, \ \sigma = 0.5$ an.
+
{Specify the Union Bound for the&nbsp; (8,4,4)&nbsp; code and various&nbsp; σ.
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{1} \ = \ $ { 0.3215 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{1} \ = \ $ { 32.15 3% }  %
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{1} \ = \ $ { 0.444 3% } $\ \cdot 10^{-3} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{1} \ = \ $ { 0.0444 3% } $\ \%$
  
{Was liefert die ''Truncated Union Bound'' bei gleichen Randbedingungen?
+
{Given the same boundary conditions, what does the&nbsp; "Truncated Union Bound"&nbsp; provide?
 
|type="{}"}
 
|type="{}"}
$(8, 4, 4)–{\rm Code}, \ \sigma = 1 \text{:} \hspace{0.2cm} p_{2} \ = \ $ {0.3192 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{2} \ = \ $ { 31.92 3% } $\ \%$
$\ (8, 4, 4)–Code, \sigma = 1:    p_{3} \ = \ $ { 1.913 3% }
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{2} \ = \ $ { 0.044 3% } $\ \%$
$\sigma = 0.5 \text{:} \hspace{0.2cm} p_{2} \ = \ $ { 0.444 3% } $\ \cdot 10^{-3} $
 
  
{Welche Aussage gilt immer (für alle Konstellationen)?
+
{Which statement is always true&nbsp; (for all constellations)?
 
|type="[]"}
 
|type="[]"}
+ Die Blockfehlerwahrscheinlichkeit ist nie größer als p1.
+
+ The block error probability is never greater than&nbsp; p1.
- Die Blockfehlerwahrscheinlichkeit ist nie größer als p2.
+
- The block error probability is never greater than&nbsp; p2.
  
{Wie kommt man von p1 zur Bhattacharyya–Schranke p3? Dadurch, dass man
+
{How do you get from&nbsp; p1&nbsp; to the&nbsp; "Bhattacharyya Bound"&nbsp; p3?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ die Fehlerfunktion Q(x) durch die Funktion QCR(x) ersetzt,
+
+ Replace the error function&nbsp; Q(x)&nbsp; with the function&nbsp; QCR(x).
- den Bhattacharyya–Parameter β=1/σ setzt,
+
- Set the Bhattacharyya parameter&nbsp; β=1/σ.
+ statt { $W_{i}$ } die Gewichtsfunktion W(X) verwendet.
+
+ Instead of&nbsp; $\{W_i\}$&nbsp; uses the weight enumerator function&nbsp; W(X).
  
  
{Geben Sie die Bhattacharyya–Schranke für σ=1 und σ=0.5 an.
+
{Specify the Bhattacharyya Bound for&nbsp; σ=1&nbsp; and&nbsp; σ=0.5&nbsp;.
 
|type="{}"}
 
|type="{}"}
$\ (8, 4, 4)–Code, \sigma = 1:   p_{3} \ = \ $ { 1.913 3% }
+
$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{3} \ = \ $ { 191.3 3% }  %
$\ \sigma = 0.5: \ \ \ p_{3} \ = \ { 0.47 3% }\ \cdot 10^{-2} $
+
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{3} \ = \ { 0.47 3% }\ \%$
 +
</quiz>
  
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The correct solution is <u>suggestion 2</u>:
  
 +
*The distance spectrum&nbsp; {Wi}&nbsp; is defined for&nbsp; i=0, ... , n:
 +
 +
#W1&nbsp; indicates how often the Hamming weight&nbsp; wH(x_i)=1&nbsp; occurs.
 +
#Wn&nbsp; indicates how often the Hamming weight&nbsp; wH(x_i)=n&nbsp; occurs.
  
</quiz>
 
  
===Musterlösung===
+
*With that,&nbsp; the&nbsp; "Union Bound"&nbsp; is:
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig ist <u>Antwort 2</u>. Das Distanzspektrum { Wi } ist definiert für i=0,...,n:
 
  
*$W_{1}$ gibt an, wie oft das Hamming–Gewicht $w_{\rm H}(\underline{x}_{i}) = 1$ auftritt.
+
:$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
*$W_{n} gibt an, wie oft das Hamming–Gewicht w_{\rm H}(\underline{x}_{i}) = n$ auftritt.
+
  
Damit lautet die ''Union Bound'':
+
'''(2)'''&nbsp; The distance spectrum of the&nbsp; (8, 4, 4)&nbsp; code was given as&nbsp; W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1.&nbsp;
 +
*Thus,&nbsp; one obtains for \sigma = 1:
 +
:$$p_1 =  W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right )
 +
= 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
  
:$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
+
*For&nbsp; \sigma = 0.5:
 +
:$$p_1 = 14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right )
 +
= 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$
 
   
 
   
  
'''(2)'''&nbsp; Das Distanzspektrum des (8, 4, 4)–Codes wurde mit $W_{0} = 1 , W_{4} = 14, W_{8} = 1 angegeben. Somit erhält man für \boldsymbol{\sigma = 1}$:
+
'''(3)'''&nbsp; With the minimum distance&nbsp; $d_{\rm min} = 4$&nbsp; we get:
 
   
 
   
bzw. für $\boldsymbol{\sigma = 0.5}$:
+
:$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
 +
:$$\sigma = 0.5\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.0444 \%}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; The correct solution is&nbsp; <u>suggestion 1</u>:  
 +
*The&nbsp; "Union Bound"&nbsp; - denoted here by&nbsp; p_{1} - is an upper bound on the block error probability in all cases.
 
   
 
   
'''(3)'''&nbsp; Mit der Minimaldistanz $d_{\rm min} = 4$ erhält man:
+
*For the bound&nbsp; $p_{2}$&nbsp; ("Truncated Union Bound")&nbsp; this is not always true.
 
   
 
   
:$$\sigma = 1.0: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 0.3192}\hspace{0.05cm},$$
+
*For example,&nbsp; in the&nbsp; $(7, 4, 3)$&nbsp; Hamming code &nbsp; &nbsp; $W_{3} = W_{4} = 7, \ W_{7} = 1$&nbsp; is obtained with standard deviation&nbsp; $\sigma = 1$:
:\sigma = 0.5: \hspace{0.2cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.444 \cdot 10^{-3}}\hspace{0.05cm}.
 
 
 
'''(4)'''&nbsp; Richtig ist <u>Antwort 1</u>. Die ''Union Bound'' – hier mit p_{1} bezeichnet – ist in jedem Fall eine obere Schranke für die Blockfehlerwahrscheinlichkeit. Für die Schranke $p_{2}$ (''Truncated Union Bound'') trifft das nicht immer zu. Beispielsweise erhält man beim (7, 4, 3)–Hamming–Code  W_{3} = W_{4} = 7, W_{7} = 1 und der Streuung $\sigma = 1:$
 
 
   
 
   
 
:p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},
 
:p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},
 
:p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.
 
:p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.
  
Die tatsächliche Blockfehlerwahrscheinlichkeit wird wahrscheinlich zwischen $p_{2} = 0.293$ und $p_{1} = 0.455$ liegen (wurde nicht nachgeprüft). Das heißt: p_{2} ist keine obere Schranke.
+
*The actual block error probability is likely to be between&nbsp; $p_{2} = 29.3\%$&nbsp; and&nbsp; $p_{1} = 45.5\%$&nbsp; (but this has not been verified). <br>That is, &nbsp; p_{2} is not an upper bound.
  
  
'''(5)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>, wie die folgende Rechnung für den (8, 4, 4)–Code zeigt:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>suggested solutions 1 and 3</u>,&nbsp; as the following calculation for the&nbsp; $(8, 4, 4)$&nbsp; code shows:
  
*Es gilt Q(x) ≤ QCR(x) = exp(– x2/2). Damit kann für die Union Bound
+
*It holds&nbsp; ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$.&nbsp; Thus,&nbsp; for the Union Bound
 
   
 
   
 
:p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )
 
:p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )
  
eine weitere obere Schranke angegeben werden:
+
:another upper bound can be specified:
 
   
 
   
:$$p_1 \le W_4 \cdot {\rm exp}\left [ - {4}/(2 \sigma^2) \right ] +W_8 \cdot {\rm exp}\left [ - {8}/(2 \sigma^2) \right ] \hspace{0.05cm}.$$
+
:$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
  
*Mit $\beta = {\rm exp}[–1/(2\sigma^2)]$ kann hierfür auch geschrieben werden (das vorgegebene \beta = 1/\sigma ist also falsch):
+
*With&nbsp; $\beta = {\rm e}^{-1/(2\sigma^2)}$&nbsp; can be written for this also&nbsp; (so the given&nbsp; \beta = 1/\sigma&nbsp; is wrong):
 
   
 
   
 
:p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.
 
:p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.
  
*Die Gewichtsfunktion des (8, 4, 4)–Codes lautet:
+
*The weight function of the&nbsp; $(8, 4, 4)$&nbsp; code is:
 
    
 
    
:W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8
+
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$
  
:\Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.
 
  
'''(6)'''&nbsp; Mit $\boldsymbol{\sigma = 1}$ lautet der Bhattacharyya–Parameter $\beta = {\rm exp}(–0.5) = 0.6065$ und man erhält damit für die Bhattacharyya–Schranke:
+
'''(6)'''&nbsp; With&nbsp; \sigma = 1,&nbsp; the Bhattacharyya parameter is&nbsp; $\beta = {\rm e}^{-0.5} = 0.6065$,&nbsp; and thus one obtains for the Bhattacharyya Bound:
 
   
 
   
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018 \hspace{0.15cm}\underline{= 1.913}\hspace{0.05cm}.$$
+
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.$$
 +
 
 +
*Considering that&nbsp; p_{3}&nbsp; is a bound for a probability,&nbsp; p_{3} = 1.913&nbsp; is only a trivial bound.
  
Berücksichtigt man, dass p_{3}(eine Schranke für) eine Wahrscheinlichkeit angibt, so ist $p_{3} = 1.913$ nur eine triviale Schranke. Für $\boldsymbol{\sigma = 0.5}$ ergibt sich dagegen $\beta = {\rm exp}(–2) \approx 0.135.$ Dann gilt:
+
*For&nbsp; \sigma = 0.5,&nbsp; on the other hand,&nbsp; $\beta = {\rm e}^{-2} \approx 0.135.$&nbsp; Then holds:
 
   
 
   
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 4.7 \cdot 10^{-3}}\hspace{0.05cm}.$$
+
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$
  
Ein Vergleich mit der Teilaufgabe 2) zeigt, dass im vorliegenden Beispiel die Bhattacharyya–Schranke p_{3} um den Faktor $(4.7 · 10^{–3})/(0.44 · 10^{–3}) > 10$ oberhalb der ''Union Bound'' $p_{1}$ liegt. Der Grund für diese große Abweichung ist die Chernoff–Rubin–Schranke, die deutlich oberhalb der Q–Funktion liegt. In der [[Aufgaben:1.16Z_Schranken_für_Q(x)|Aufgabe 1.16Z]] wird die Abweichung zwischen {\rm Q}_{\rm CR} und {\rm Q}(x) auch quantitativ berechnet:
+
A comparison with subtask&nbsp; '''(2)'''&nbsp; shows that in the present example the Bhattacharyya Bound&nbsp; p_{3}&nbsp; is above the&nbsp; "Union Bound"&nbsp; p_{1}&nbsp; by a factor&nbsp;
 +
:$$(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.$$
 +
 +
*The reason for this large deviation is the Chernoff-Rubin bound,&nbsp; which is well above the&nbsp; ${\rm Q}$ function.
 +
 +
*In&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]],&nbsp; the deviation between&nbsp; {\rm Q}_{\rm CR}&nbsp; and&nbsp; {\rm Q}(x)&nbsp; is also calculated quantitatively:
 
   
 
   
 
:{{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.
 
:{{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.6 Schranken für die Blockfehlerwahrscheinlichkeit
+
[[Category:Channel Coding: Exercises|^1.6 Error Probability Bounds^]]
 
 
 
 
^]]
 

Latest revision as of 17:17, 5 August 2022

Function  {\rm Q}(x)  and approximations;
it holds:  {\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)

We assume the following constellation:

  • A linear block code with code rate  R = k/n  and distance spectrum  \{W_i\}, \ i = 1, \ \text{...} \ , n,
  • an AWGN channel characterized by  E_{\rm B}/N_{0}   ⇒   convertible to noise power  \sigma^2,
  • a receiver based on  "soft decision"  as well as the  "maximum likelihood criterion".


Under the assumption valid for the entire exercise that always the zero-word  \underline{x}_{1} = (0, 0, \text{... } \ , 0)  is sent, the  "pairwise error probability"  with a different code word  \underline{x}_{l} (l = 2,\ \text{...} \ , 2^k):

{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = {\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm}.

The derivation of this relation can be found in  [Liv10].  Used in this equation are:

  • the  "Hamming weight"  w_{\rm H}(\underline{x}_{l})  of the code word  \underline{x}_{l},
  • the  "AWGN noise power"  \sigma^2 = (2 \cdot R \cdot E_{\rm B}/N_{0})^{-1}.


This allows various bounds to be specified for the block error probability:

p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l \hspace{0.05cm}= \hspace{0.05cm}2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},
p_2 = W_{d_{\rm min}} \cdot {\rm Q}\left ( \sqrt{d_{\rm min}/\sigma^2} \right ) \hspace{0.05cm},
p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm with}\hspace{0.15cm} \beta = {\rm e}^{ - 1/(2\sigma^2) } \hspace{0.05cm}.
In this case,  replace the distance spectrum  \{W_i\}  with the weight enumerator function:
\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.

In the transition from the  "Union Bound"  p_{1}  to the more imprecise bound  p_{3}  among others

  • the function  {\rm Q}(x)  is replaced by the  "Chernoff-Rubin bound"  {\rm Q}_{\rm CR}(x).
  • Both functions are shown in the above graph  (red and green curve, resp.).


In the  "Exercise 1.16Z"  the relationship between these functions is evaluated numerically and referenced to the bounds  {\rm Q}_{\rm o}(x) and {\rm Q}_{\rm u}(x)  which are also drawn in the above graph.



Hints:

  • The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."



Questions

1

Which equation applies to the  "Union Bound"?

p_{1} = \sum_{l\hspace{0.05cm}=\hspace{0.05cm}2}^{2^k} W_{l} · {\rm Q}\big[(l/\sigma^2)^{0.5}\big],
p_{1} = \sum_{i\hspace{0.05cm}=\hspace{0.05cm}1}^{n} W_{i} · {\rm Q}\big[(i/\sigma^2)^{0.5}\big].

2

Specify the Union Bound for the  (8, 4, 4)  code and various  \sigma.

\sigma = 1.0 \text{:} \hspace{0.4cm} p_{1} \ = \

\ \%
\sigma = 0.5 \text{:} \hspace{0.4cm} p_{1} \ = \

\ \%

3

Given the same boundary conditions, what does the  "Truncated Union Bound"  provide?

\sigma = 1.0 \text{:} \hspace{0.4cm} p_{2} \ = \

\ \%
\sigma = 0.5 \text{:} \hspace{0.4cm} p_{2} \ = \

\ \%

4

Which statement is always true  (for all constellations)?

The block error probability is never greater than  p_{1}.
The block error probability is never greater than  p_{2}.

5

How do you get from  p_{1}  to the  "Bhattacharyya Bound"  p_{3}

Replace the error function  {\rm Q}(x)  with the function  {\rm Q}_{\rm CR}(x).
Set the Bhattacharyya parameter  \beta = 1/\sigma.
Instead of  \{W_i\}  uses the weight enumerator function  W(X).

6

Specify the Bhattacharyya Bound for  \sigma = 1  and  \sigma = 0.5 .

\sigma = 1.0 \text{:} \hspace{0.4cm} p_{3} \ = \

\ \%
\sigma = 0.5 \text{:} \hspace{0.4cm} p_{3} \ = \

\ \%


Solution

(1)  The correct solution is suggestion 2:

  • The distance spectrum  \{W_i\}  is defined for  i = 0, \ \text{...} \ , \ n:
  1. W_{1}  indicates how often the Hamming weight  w_{\rm H}(\underline{x}_{i}) = 1  occurs.
  2. W_{n}  indicates how often the Hamming weight  w_{\rm H}(\underline{x}_{i}) = n  occurs.


  • With that,  the  "Union Bound"  is:
p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.


(2)  The distance spectrum of the  (8, 4, 4)  code was given as  W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1

  • Thus,  one obtains for \sigma = 1:
p_1 = W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right ) = 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},
  • For  \sigma = 0.5:
p_1 = 14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right ) = 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.


(3)  With the minimum distance  d_{\rm min} = 4  we get:

\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},
\sigma = 0.5\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.0444 \%}\hspace{0.05cm}.


(4)  The correct solution is  suggestion 1:

  • The  "Union Bound"  - denoted here by  p_{1} - is an upper bound on the block error probability in all cases.
  • For the bound  p_{2}  ("Truncated Union Bound")  this is not always true.
  • For example,  in the  (7, 4, 3)  Hamming code   ⇒   W_{3} = W_{4} = 7, \ W_{7} = 1  is obtained with standard deviation  \sigma = 1:
p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},
p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.
  • The actual block error probability is likely to be between  p_{2} = 29.3\%  and  p_{1} = 45.5\%  (but this has not been verified).
    That is,   p_{2} is not an upper bound.


(5)  Correct are  suggested solutions 1 and 3,  as the following calculation for the  (8, 4, 4)  code shows:

  • It holds  {\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}.  Thus,  for the Union Bound
p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )
another upper bound can be specified:
p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.
  • With  \beta = {\rm e}^{-1/(2\sigma^2)}  can be written for this also  (so the given  \beta = 1/\sigma  is wrong):
p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.
  • The weight function of the  (8, 4, 4)  code is:
W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.


(6)  With  \sigma = 1,  the Bhattacharyya parameter is  \beta = {\rm e}^{-0.5} = 0.6065,  and thus one obtains for the Bhattacharyya Bound:

p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.
  • Considering that  p_{3}  is a bound for a probability,  p_{3} = 1.913  is only a trivial bound.
  • For  \sigma = 0.5,  on the other hand,  \beta = {\rm e}^{-2} \approx 0.135.  Then holds:
p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.

A comparison with subtask  (2)  shows that in the present example the Bhattacharyya Bound  p_{3}  is above the  "Union Bound"  p_{1}  by a factor 

(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.
  • The reason for this large deviation is the Chernoff-Rubin bound,  which is well above the  {\rm Q} function.
  • In  "Exercise 1.16Z",  the deviation between  {\rm Q}_{\rm CR}  and  {\rm Q}(x)  is also calculated quantitatively:
{{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.