Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"

From LNTwww
 
(34 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1996__Dig_Z_4_1.png|right|frame|Energiebegrenzte Signale]]
+
[[File:P_ID1996__Dig_Z_4_1.png|right|frame|Energy-limited signals]]
Diese Aufgabe verfolgt das genau gleiche Ziel wie die [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Aufgabe A4.1]]. Für M=4 energiebegrenzte Signale si(t) mit i=1, ... ,4 sollen die N erforderlichen orthonormalen Basisfunktionen φj(t) gefunden werden, die folgende Bedingung erfüllen müssen.
+
This exercise pursues exactly the same goal as  [[Aufgaben:Eercise_4.1:_About_the_Gram-Schmidt_Process|"Exercise 4.1"]]:
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t =\\
+
 
\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm \delta}_{jk} =
+
For&nbsp; M=4&nbsp; energy-limited signals&nbsp; si(t)&nbsp; with&nbsp; $i = 1, \ \text{...} \ , 4$,&nbsp; the&nbsp; N&nbsp; required orthonormal basis functions&nbsp; φj(t)&nbsp; are to be found,&nbsp; which must satisfy the following condition:
 +
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} =
 
\left\{ \begin{array}{c} 1 \\
 
\left\{ \begin{array}{c} 1 \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
Line 12: Line 13:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 +
With&nbsp; M&nbsp; transmitted signals&nbsp; si(t),&nbsp; already fewer basis functions&nbsp; φj(t)&nbsp; can suffice,&nbsp; namely&nbsp; N.&nbsp; Thus,&nbsp; in general,&nbsp; N &#8804; M.
 +
 +
These are exactly the same energy-limited signals&nbsp; si(t)&nbsp; as in&nbsp; [[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|"Exercise 4.1"]]:
 +
*The difference is the different order of the signals&nbsp; si(t).
 +
 +
*In this exercise,&nbsp; these are sorted in such a way that the basis functions can be found without using the more cumbersome&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].&nbsp;
 +
 +
 +
 +
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 +
 +
*For numerical calculations,&nbsp; use&nbsp; A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm &micro; s}  \hspace{0.05cm}.
 +
 +
 +
===Questions===
 +
<quiz display=simple>
 +
{In Exercise 4.1,&nbsp; the Gram-Schmidt process resulted in&nbsp; N=3&nbsp; basis functions.&nbsp; How many basis functions are needed here?
 +
|type="{}"}
 +
N =   { 3 3% }
 +
 +
{Give the 2&ndash;norm of all these signals:
 +
|type="{}"}
 +
||s1(t)|| =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
||s2(t)|| =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
||s3(t)|| =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
||s4(t)|| =  { 1.414 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
 +
{Which statements are true for the basis functions&nbsp; φ1(t),&nbsp; φ2(t)&nbsp; and&nbsp; φ3(t)?
 +
|type="[]"}
 +
+ The basis functions computed in&nbsp; "Exericse 4.1"&nbsp; are also appropriate here.
 +
- There are infinitely many possibilities for&nbsp; {φ1(t), φ2(t), φ3(t)}.
 +
- A possible set is&nbsp; {φj(t)}={sj(t)},&nbsp; with&nbsp; j=1, 2, 3.
 +
+ A possible set is&nbsp; {φj(t)}={sj(t)/K},&nbsp; with&nbsp; j=1, 2, 3.
 +
 +
{What are the coefficients of the signal&nbsp; s4(t)&nbsp; with respect to the basis functions&nbsp; {φj(t)}={sj(t)/K}, with&nbsp; j=1, 2, 3?
 +
|type="{}"}
 +
s41 =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
s42 =  { -1.03--0.97 } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
s43 =  { 0. } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
</quiz>
 +
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; The only difference to Exercise 4.1 is the different numbering of the signals&nbsp; si(t).
 +
*Thus it is obvious that&nbsp; N=3_&nbsp; must hold here as well.
 +
 +
 +
'''(2)'''&nbsp; The&nbsp; "2&ndash;norm"&nbsp; gives the root of the signal energy and is comparable to the&nbsp; "rms value"&nbsp; for power-limited signals.
 +
*The first three signals all have the same 2&ndash;norm:
 +
:||s1(t)||=||s2(t)||=||s3(t)||=A2T=103Ws_.
 +
 +
*The norm of the last signal is larger by a factor of&nbsp; 2:
 +
:||s4(t)||=1.414103Ws_.
 +
 +
 +
'''(3)'''&nbsp; The&nbsp; <u>first and last statements are true</u>&nbsp; in contrast to statements 2 and 3:
 +
* It would be completely illogical if the basis functions found should no longer hold when the signals&nbsp; si(t)&nbsp; are sorted differently.
 +
 +
* The Gram&ndash;Schmidt process yields only one possible set&nbsp; {φj(t)}&nbsp; of basis functions.&nbsp; A different sorting&nbsp; (possibly)&nbsp; yields a different basis function.
 +
 +
*The number of permutations of &nbsp; M=4 &nbsp; signals is &nbsp; 4!=24.&nbsp; In any case,&nbsp; there cannot be more basis function sets &nbsp; &rArr; &nbsp; solution 2 is wrong.
 +
 +
*However,&nbsp; there are probably&nbsp; (because of&nbsp; N=3)&nbsp; only&nbsp; 3!=6&nbsp; possible sets of basis functions.&nbsp;
 +
 +
*As can be seen from the&nbsp; [[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|"solution"]]&nbsp; to&nbsp; "Exercise 4.1",&nbsp; the same basis functions will result with the order&nbsp; s1(t), s2(t), s4(t), s3(t)&nbsp; as with&nbsp; s1(t), s2(t), s3(t), s4(t).&nbsp; However,&nbsp; this is only a conjecture of the authors;&nbsp; we have not checked it.
 +
 +
* Statement 3 cannot be true simply because of the different units of&nbsp; si(t)&nbsp; and&nbsp; φj(t).&nbsp; Like&nbsp; A,&nbsp; the signals have the unit&nbsp; W,&nbsp; the basis functions the unit 1/s.
 +
 +
* Thus,&nbsp; the last solution is correct,&nbsp; where for&nbsp; K&nbsp; holds:
 +
:K=||s1(t)||=||s2(t)||=||s3(t)||=103Ws.
  
  
 +
'''(4)'''&nbsp; From the comparison of the diagrams in the specification section we can see:
 +
:s4(t)=s1(t)s2(t)=Kφ1(t)Kφ2(t).
  
 +
*Furthermore holds:
 +
:s4(t)=s41φ1(t)+s42φ2(t)+s43φ3(t)
 +
:$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm},
 +
\hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}. $$
 +
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Signale, Basisfunktionen, Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 10:36, 12 August 2022

Energy-limited signals

This exercise pursues exactly the same goal as  "Exercise 4.1":

For  M=4  energy-limited signals  si(t)  with  i=1, ... ,4,  the  N  required orthonormal basis functions  φj(t)  are to be found,  which must satisfy the following condition:

<φj(t),φk(t)> = +φj(t)φk(t)dt=δjk={10j=kjk.

With  M  transmitted signals  si(t),  already fewer basis functions  φj(t)  can suffice,  namely  N.  Thus,  in general,  NM.

These are exactly the same energy-limited signals  si(t)  as in  "Exercise 4.1":

  • The difference is the different order of the signals  si(t).
  • In this exercise,  these are sorted in such a way that the basis functions can be found without using the more cumbersome  "Gram-Schmidt process"



Notes:

  • For numerical calculations,  use  A=1W,T=1µs.


Questions

1

In Exercise 4.1,  the Gram-Schmidt process resulted in  N=3  basis functions.  How many basis functions are needed here?

N = 

2

Give the 2–norm of all these signals:

||s1(t)|| = 

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_2(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_3(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_4(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}

3

Which statements are true for the basis functions  \varphi_1(t)\varphi_2(t)  and  \varphi_3(t)?

The basis functions computed in  "Exericse 4.1"  are also appropriate here.
There are infinitely many possibilities for  \{\varphi_1(t),\ \varphi_2(t),\ \varphi_3(t)\}.
A possible set is  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\},  with  j = 1,\ 2,\ 3.
A possible set is  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\},  with  j = 1,\ 2,\ 3.

4

What are the coefficients of the signal  s_4(t)  with respect to the basis functions  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}, with  j = 1,\ 2,\ 3?

s_{\rm 41} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
s_{\rm 42} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
s_{\rm 43} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}


Solution

(1)  The only difference to Exercise 4.1 is the different numbering of the signals  s_i(t).

  • Thus it is obvious that  \underline {N = 3}  must hold here as well.


(2)  The  "2–norm"  gives the root of the signal energy and is comparable to the  "rms value"  for power-limited signals.

  • The first three signals all have the same 2–norm:
||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.
  • The norm of the last signal is larger by a factor of  \sqrt{2}:
||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.


(3)  The  first and last statements are true  in contrast to statements 2 and 3:

  • It would be completely illogical if the basis functions found should no longer hold when the signals  s_i(t)  are sorted differently.
  • The Gram–Schmidt process yields only one possible set  \{\varphi_{\it j}(t)\}  of basis functions.  A different sorting  (possibly)  yields a different basis function.
  • The number of permutations of   M = 4   signals is   4! = 24.  In any case,  there cannot be more basis function sets   ⇒   solution 2 is wrong.
  • However,  there are probably  (because of  N = 3)  only  3! = 6  possible sets of basis functions. 
  • As can be seen from the  "solution"  to  "Exercise 4.1",  the same basis functions will result with the order  s_1(t),\ s_2(t),\ s_4(t),\ s_3(t)  as with  s_1(t),\ s_2(t),\ s_3(t),\ s_4(t).  However,  this is only a conjecture of the authors;  we have not checked it.
  • Statement 3 cannot be true simply because of the different units of  s_i(t)  and  \varphi_{\it j}(t).  Like  A,  the signals have the unit  \sqrt{\rm W},  the basis functions the unit \sqrt{\rm 1/s}.
  • Thus,  the last solution is correct,  where for  K  holds:
K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.


(4)  From the comparison of the diagrams in the specification section we can see:

s_{4}(t) = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.
  • Furthermore holds:
s_{4}(t) = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)
\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}.