Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.1Z: Other Basis Functions"

From LNTwww
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Signale, Basisfunktionen und Vektorräume}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces}}
  
[[File:P_ID1996__Dig_Z_4_1.png|right|frame|Energiebegrenzte Signale]]
+
[[File:P_ID1996__Dig_Z_4_1.png|right|frame|Energy-limited signals]]
Diese Aufgabe verfolgt das genau gleiche Ziel wie die [[Aufgaben:4.1_Gram-Schmidt-Verfahren| Aufgabe A4.1]]. Für M=4 energiebegrenzte Signale si(t) mit i=1, ... ,4 sollen die N erforderlichen orthonormalen Basisfunktionen φj(t) gefunden werden, die folgende Bedingung erfüllen müssen.
+
This exercise pursues exactly the same goal as  [[Aufgaben:Eercise_4.1:_About_the_Gram-Schmidt_Process|"Exercise 4.1"]]:
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t =\\
+
 
\hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm \delta}_{jk} =
+
For&nbsp; M=4&nbsp; energy-limited signals&nbsp; si(t)&nbsp; with&nbsp; $i = 1, \ \text{...} \ , 4$,&nbsp; the&nbsp; N&nbsp; required orthonormal basis functions&nbsp; φj(t)&nbsp; are to be found,&nbsp; which must satisfy the following condition:
\left\{ \begin{array}{c} 1 $$
+
:$$< \hspace{-0.1cm} \varphi_j(t), \hspace{0.1cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\, {\rm d} t = {\rm \delta}_{jk} =
:$$0  \end{array} \right.\quad
+
\left\{ \begin{array}{c} 1 \\
 +
0  \end{array} \right.\quad
 
\begin{array}{*{1}c} j = k
 
\begin{array}{*{1}c} j = k
 
\\  j \ne k \\ \end{array}
 
\\  j \ne k \\ \end{array}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Mit M Sendesignale si(t) können bereits weniger Basisfunktionen φj(t) ausreichen, nämlich N. Allgemein gilt also N &#8804; M.
+
With&nbsp; M&nbsp; transmitted signals&nbsp; si(t),&nbsp; already fewer basis functions&nbsp; φj(t)&nbsp; can suffice,&nbsp; namely&nbsp; N.&nbsp; Thus,&nbsp; in general,&nbsp; N &#8804; M.
 +
 
 +
These are exactly the same energy-limited signals&nbsp; si(t)&nbsp; as in&nbsp; [[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|"Exercise 4.1"]]:
 +
*The difference is the different order of the signals&nbsp; si(t).
 +
 +
*In this exercise,&nbsp; these are sorted in such a way that the basis functions can be found without using the more cumbersome&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process|"Gram-Schmidt process"]].&nbsp;
 +
 
 +
 
  
Es handelt sich hier um die genau gleichen energiebegrenzten Signale si(t) wie in der Aufgabe A4.1. Der Unterschied ist die unterschiedliche Reihenfolge der Signale si(t). Diese sind in dieser Aufgabe so sortiert, dass die Basisfunktionen auch ohne Anwendung des umständlicheren [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt| Gram&ndash;Schmidt&ndash;Verfahrens]] gefunden werden können.
 
  
''Hinweise:''
+
Notes:  
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].  
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
* Verwenden Sie für numerische Berechnungen:
+
:$$A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm \mu s}  \hspace{0.05cm}.  $$
+
*For numerical calculations,&nbsp; use&nbsp; $A = 1 \sqrt{\rm W} ,  \hspace{0.2cm} T = 1\,{\rm &micro; s}  \hspace{0.05cm}.  $
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{In Exercise 4.1,&nbsp; the Gram-Schmidt process resulted in&nbsp; N=3&nbsp; basis functions.&nbsp; How many basis functions are needed here?
 +
|type="{}"}
 +
N =   { 3 3% }
 +
 
 +
{Give the 2&ndash;norm of all these signals:
 +
|type="{}"}
 +
||s1(t)|| =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
||s2(t)|| =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
||s3(t)|| =  { 1 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
||s4(t)|| =  { 1.414 3% } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
 
 +
{Which statements are true for the basis functions&nbsp; φ1(t),&nbsp; φ2(t)&nbsp; and&nbsp; φ3(t)?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ The basis functions computed in&nbsp; "Exericse 4.1"&nbsp; are also appropriate here.
- false
+
- There are infinitely many possibilities for&nbsp; {φ1(t), φ2(t), φ3(t)}.
 +
- A possible set is&nbsp; {φj(t)}={sj(t)},&nbsp; with&nbsp; j=1, 2, 3.
 +
+ A possible set is&nbsp; {φj(t)}={sj(t)/K},&nbsp; with&nbsp; j=1, 2, 3.
  
{Input-Box Frage
+
{What are the coefficients of the signal&nbsp; s4(t)&nbsp; with respect to the basis functions&nbsp; {φj(t)}={sj(t)/K}, with&nbsp; j=1, 2, 3?
 
|type="{}"}
 
|type="{}"}
$xyz$ = { 5.4 3% } $ab$
+
$s_{\rm 41} \ = \ { 1 3% }\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
 +
$s_{\rm 42} \ = \ $ { -1.03--0.97 } \ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}
 +
s43 =  { 0. } $\ \cdot \ 10^{\rm &ndash;3} \ \rm \sqrt{Ws}$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The only difference to Exercise 4.1 is the different numbering of the signals&nbsp; si(t).
'''(2)'''&nbsp;  
+
*Thus it is obvious that&nbsp; N=3_&nbsp; must hold here as well.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
'''(2)'''&nbsp; The&nbsp; "2&ndash;norm"&nbsp; gives the root of the signal energy and is comparable to the&nbsp; "rms value"&nbsp; for power-limited signals.
 +
*The first three signals all have the same 2&ndash;norm:
 +
:||s1(t)||=||s2(t)||=||s3(t)||=A2T=103Ws_.
 +
 
 +
*The norm of the last signal is larger by a factor of&nbsp; 2:
 +
:||s4(t)||=1.414103Ws_.
 +
 
 +
 
 +
'''(3)'''&nbsp; The&nbsp; <u>first and last statements are true</u>&nbsp; in contrast to statements 2 and 3:
 +
* It would be completely illogical if the basis functions found should no longer hold when the signals&nbsp; si(t)&nbsp; are sorted differently.
 +
 
 +
* The Gram&ndash;Schmidt process yields only one possible set&nbsp; {φj(t)}&nbsp; of basis functions.&nbsp; A different sorting&nbsp; (possibly)&nbsp; yields a different basis function.
 +
 
 +
*The number of permutations of &nbsp; $M = 4&nbsp; signals is &nbsp;4! = 24$.&nbsp; In any case,&nbsp; there cannot be more basis function sets &nbsp; &rArr; &nbsp; solution 2 is wrong.
 +
 
 +
*However,&nbsp; there are probably&nbsp; (because of&nbsp; $N = 3)&nbsp; only&nbsp;3! = 6$&nbsp; possible sets of basis functions.&nbsp;
 +
 
 +
*As can be seen from the&nbsp; [[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|"solution"]]&nbsp; to&nbsp; "Exercise 4.1",&nbsp; the same basis functions will result with the order&nbsp; s1(t), s2(t), s4(t), s3(t)&nbsp; as with&nbsp; s1(t), s2(t), s3(t), s4(t).&nbsp; However,&nbsp; this is only a conjecture of the authors;&nbsp; we have not checked it.
 +
 
 +
* Statement 3 cannot be true simply because of the different units of&nbsp; si(t)&nbsp; and&nbsp; φj(t).&nbsp; Like&nbsp; A,&nbsp; the signals have the unit&nbsp; W,&nbsp; the basis functions the unit 1/s.
 +
 
 +
* Thus,&nbsp; the last solution is correct,&nbsp; where for&nbsp; K&nbsp; holds:
 +
:K=||s1(t)||=||s2(t)||=||s3(t)||=103Ws.
 +
 
 +
 
 +
'''(4)'''&nbsp; From the comparison of the diagrams in the specification section we can see:
 +
:s4(t)=s1(t)s2(t)=Kφ1(t)Kφ2(t).
 +
 
 +
*Furthermore holds:
 +
:s4(t)=s41φ1(t)+s42φ2(t)+s43φ3(t)
 +
:$$\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm},
 +
\hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}. $$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.1 Signale, Basisfunktionen, Vektorräume^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.1 Basis Functions & Vector Spaces^]]

Latest revision as of 10:36, 12 August 2022

Energy-limited signals

This exercise pursues exactly the same goal as  "Exercise 4.1":

For  M=4  energy-limited signals  si(t)  with  i=1, ... ,4,  the  N  required orthonormal basis functions  φj(t)  are to be found,  which must satisfy the following condition:

<φj(t),φk(t)> = +φj(t)φk(t)dt=δjk={10j=kjk.

With  M  transmitted signals  si(t),  already fewer basis functions  φj(t)  can suffice,  namely  N.  Thus,  in general,  NM.

These are exactly the same energy-limited signals  si(t)  as in  "Exercise 4.1":

  • The difference is the different order of the signals  si(t).
  • In this exercise,  these are sorted in such a way that the basis functions can be found without using the more cumbersome  "Gram-Schmidt process"



Notes:

  • For numerical calculations,  use  A = 1 \sqrt{\rm W} , \hspace{0.2cm} T = 1\,{\rm µ s} \hspace{0.05cm}.


Questions

1

In Exercise 4.1,  the Gram-Schmidt process resulted in  N = 3  basis functions.  How many basis functions are needed here?

N \ = \

2

Give the 2–norm of all these signals:

||s_1(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_2(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_3(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
||s_4(t)|| \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}

3

Which statements are true for the basis functions  \varphi_1(t)\varphi_2(t)  and  \varphi_3(t)?

The basis functions computed in  "Exericse 4.1"  are also appropriate here.
There are infinitely many possibilities for  \{\varphi_1(t),\ \varphi_2(t),\ \varphi_3(t)\}.
A possible set is  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)\},  with  j = 1,\ 2,\ 3.
A possible set is  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\},  with  j = 1,\ 2,\ 3.

4

What are the coefficients of the signal  s_4(t)  with respect to the basis functions  \{\varphi_{\it j}(t)\} = \{s_{\it j}(t)/K\}, with  j = 1,\ 2,\ 3?

s_{\rm 41} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
s_{\rm 42} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}
s_{\rm 43} \ = \

\ \cdot \ 10^{\rm –3} \ \rm \sqrt{Ws}


Solution

(1)  The only difference to Exercise 4.1 is the different numbering of the signals  s_i(t).

  • Thus it is obvious that  \underline {N = 3}  must hold here as well.


(2)  The  "2–norm"  gives the root of the signal energy and is comparable to the  "rms value"  for power-limited signals.

  • The first three signals all have the same 2–norm:
||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = \sqrt{A^2 \cdot T}\hspace{0.1cm}\hspace{0.15cm}\underline { = 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.
  • The norm of the last signal is larger by a factor of  \sqrt{2}:
||s_4(t)|| \hspace{0.1cm}\hspace{0.15cm}\underline { = 1.414 \cdot 10^{-3}\sqrt{\rm Ws}} \hspace{0.05cm}.


(3)  The  first and last statements are true  in contrast to statements 2 and 3:

  • It would be completely illogical if the basis functions found should no longer hold when the signals  s_i(t)  are sorted differently.
  • The Gram–Schmidt process yields only one possible set  \{\varphi_{\it j}(t)\}  of basis functions.  A different sorting  (possibly)  yields a different basis function.
  • The number of permutations of   M = 4   signals is   4! = 24.  In any case,  there cannot be more basis function sets   ⇒   solution 2 is wrong.
  • However,  there are probably  (because of  N = 3)  only  3! = 6  possible sets of basis functions. 
  • As can be seen from the  "solution"  to  "Exercise 4.1",  the same basis functions will result with the order  s_1(t),\ s_2(t),\ s_4(t),\ s_3(t)  as with  s_1(t),\ s_2(t),\ s_3(t),\ s_4(t).  However,  this is only a conjecture of the authors;  we have not checked it.
  • Statement 3 cannot be true simply because of the different units of  s_i(t)  and  \varphi_{\it j}(t).  Like  A,  the signals have the unit  \sqrt{\rm W},  the basis functions the unit \sqrt{\rm 1/s}.
  • Thus,  the last solution is correct,  where for  K  holds:
K = ||s_1(t)|| = ||s_2(t)|| = ||s_3(t)|| = 10^{-3}\sqrt{\rm Ws} \hspace{0.05cm}.


(4)  From the comparison of the diagrams in the specification section we can see:

s_{4}(t) = s_{1}(t) - s_{2}(t) = K \cdot \varphi_1(t) - K \cdot \varphi_2(t)\hspace{0.05cm}.
  • Furthermore holds:
s_{4}(t) = s_{41}\cdot \varphi_1(t) + s_{42}\cdot \varphi_2(t) + s_{43}\cdot \varphi_3(t)
\Rightarrow \hspace{0.3cm}s_{41} = K \hspace{0.1cm}\hspace{0.15cm}\underline {= 10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{42} = -K \hspace{0.1cm}\hspace{0.15cm}\underline {= -10^{-3}\sqrt{\rm Ws}}\hspace{0.05cm}, \hspace{0.2cm}s_{43} \hspace{0.1cm}\hspace{0.15cm}\underline { = 0}\hspace{0.05cm}.