Difference between revisions of "Aufgaben:Exercise 4.15: Optimal Signal Space Allocation"

From LNTwww
Line 37: Line 37:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die mittlere Energie&nbsp; $E_{\rm B}$&nbsp; pro Bit abhängig von&nbsp; $R$, insbesondere für&nbsp; $R = 1$&nbsp; und&nbsp; $R = \sqrt{2}$.
+
{Calculate the average energy&nbsp; $E_{\rm B}$&nbsp; per bit depending on&nbsp; $R$, in particular for&nbsp; $R = 1$&nbsp; and&nbsp; $R = \sqrt{2}$.
 
|type="{}"}
 
|type="{}"}
 
$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\  = \ $ { 0.333 3% }
 
$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\  = \ $ { 0.333 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $ { 0.5 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $ { 0.5 3% }
  
{Welche Aussagen gelten für den minimalen Abstand zweier Signalraumpunkte?
+
{Which statements are true for the minimum distance between two signal space points?
 
|type="[]"}
 
|type="[]"}
+ Für&nbsp; $R < R_{\rm min}$&nbsp; tritt die minimale Distanz zwischen zwei roten Punkten auf.
+
+ For&nbsp; $R < R_{\rm min}$,&nbsp; the minimum distance occurs between two red points.
+ Für&nbsp; $R > R_{\rm max}$&nbsp; tritt die minimale Distanz zwischen zwei blauen Punkten auf.
+
+ For&nbsp; $R > R_{\rm max}$,&nbsp; the minimum distance occurs between two blue points.
+ Für&nbsp; $R_{\rm min} &#8804; R &#8804; R_{\rm max}$&nbsp; tritt die minimale Distanz zwischen "Rot" und "Blau" auf.
+
+ For&nbsp; $R_{\rm min} &#8804; R &#8804; R_{\rm max}$,&nbsp; the minimum distance occurs between "red" and "blue".
  
{Berechnen Sie die minimale Distanz abhängig von&nbsp; $R$, insbesondere für
+
{Calculate the minimum distance depending on&nbsp; $R$, in particular for
 
|type="{}"}
 
|type="{}"}
 
$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $ { 0.765 3% }
 
$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $ { 0.765 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $ { 1 3% }
 
$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $ { 1 3% }
  
{Geben Sie die Leistungseffizienz&nbsp; $\eta$&nbsp; allgemein an. Welches&nbsp; $\eta$&nbsp; ergibt sich für&nbsp; $R = 1$?
+
{Give the power efficiency&nbsp; $\eta$&nbsp; in general terms. What&nbsp; $\eta$&nbsp; results for&nbsp; $R = 1$?
 
|type="{}"}
 
|type="{}"}
 
$\eta\ = \ $ { 0.439 3% }
 
$\eta\ = \ $ { 0.439 3% }
  
{Welche Leistungseffizienzwerte ergeben sich für&nbsp; $R = R_{\rm min}$&nbsp; und&nbsp; $R = R_{\rm max}$? Interpretation.
+
{What power efficiency values result for&nbsp; $R = R_{\rm min}$&nbsp; and&nbsp; $R = R_{\rm max}$? Interpretation.
 
|type="{}"}
 
|type="{}"}
 
$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ ${ 0.634 3% }
 
$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ ${ 0.634 3% }
Line 63: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Wegen $M = 8$ &nbsp;&#8658;&nbsp; $b = 3$ gilt für die mittlere Signalenergie pro Bit $E_{\rm B} = E_{\rm S}/3$, wobei die mittlere Signalenergie pro Symbol ($E_{\rm S}$) als der mittlere quadratische Abstand der Signalraumpunkte vom Ursprung zu berechnen ist. Mit $r = 1$ erhält man:
+
'''(1)'''&nbsp; Because of $M = 8$ &nbsp;&#8658;&nbsp; $b = 3$, the mean signal energy per bit is $E_{\rm B} = E_{\rm S}/3$, where the mean signal energy per symbol ($E_{\rm S}$) is to be calculated as the mean square distance of the signal space points from the origin. With $r = 1$ one obtains:
[[File:P_ID2073__Dig_A_4_15a.png|right|frame|Sonderfälle der 8–QAM]]
+
[[File:P_ID2073__Dig_A_4_15a.png|right|frame|Special cases of 8–QAM]]
 
:$$E_{\rm S} = {1}/{8  } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 +  R^2})/{2  }
 
:$$E_{\rm S} = {1}/{8  } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 +  R^2})/{2  }
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 +  R^2})/{6}  
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 +  R^2})/{6}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Insbesondere gilt:
+
In particular:
* Für $R = 1$ ergibt sich eine 8&ndash;PSK &nbsp; &rArr; &nbsp; $E_{\rm S} = 1$ und $E_{\rm B} \ \underline {= 0.333}$ (siehe linke Grafik).
+
* For $R = 1$, there is an 8&ndash;PSK &nbsp; &rArr; &nbsp; $E_{\rm S} = 1$ and $E_{\rm B} \ \underline {= 0.333}$ (see left graph).
* Die rechte Grafik gilt für $R = \sqrt{2}$. In diesem Fall ist $E_{\rm B} \ \underline {= 0.5}$.
+
* The right graph is valid for $R = \sqrt{2}$. In this case, $E_{\rm B} \ \underline {= 0.5}$.
  
  
Anzumerken ist, dass diese Energien eigentlich noch mit der Normierungsenergie $E$ zu multiplizieren sind.
+
Note that these energies actually still have to be multiplied by the normalization energy $E$.
  
  
'''(2)'''&nbsp; <u>Alle Aussagen treffen zu</u>:  
+
'''(2)'''&nbsp; <u>All statements are true</u>:  
*Im gezeichneten Beispiel auf dem Angabenblatt mit $R = R_{\rm max}$ ist der Abstand zwischen zwei benachbarten blauen Punkten genau so groß wie der Abstand zwischen einem roten (äußeren) und einem blauen (inneren) Punkt.  
+
*In the drawn example on the information section with $R = R_{\rm max}$, the distance between two neighboring blue points is exactly the same as the distance between a red (outer) and a blue (inner) point.
[[File:P_ID2074__Dig_A_4_15c.png|right|frame|Zur Berechnung der minimalen Distanz]]  
+
[[File:P_ID2074__Dig_A_4_15c.png|right|frame|To calculate the minimum distance]]  
*Für $R > R_{\rm max}$ ist der Abstand zwischen zwei blauen Punkten am geringsten.  
+
*For $R > R_{\rm max}$, the distance between two blue points is the smallest.
*Für $R < R_{\rm min}$ tritt der minimale Abstand zwischen zwei roten Punkten auf.
+
*For $R < R_{\rm min}$, the minimum distance occurs between two red points.
  
  
'''(3)'''&nbsp; Die Grafik verdeutlicht die geometrische Berechnung. Mit "Pythagoras" erhält man:
+
'''(3)'''&nbsp; The graphic illustrates the geometric calculation. With "Pythagoras" one obtains:
 
:$$d_{\rm min}^2 =(R/\sqrt{2})^2 +  (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2  \hspace{0.3cm}
 
:$$d_{\rm min}^2 =(R/\sqrt{2})^2 +  (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2  \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2}   
 
\Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2}   
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Insbesondere gilt für $R = 1$ (8&ndash;PSK):
+
In particular, for $R = 1$ (8&ndash;PSK):
 
:$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} }  \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) )
 
:$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} }  \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) )
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Dagegen ist für $\underline {R = \sqrt{2}}$ entsprechend der rechten Grafik zur Teilaufgabe '''(1)''' die minimale Distanz $d_{\rm min} \ \underline {= 1}$.
+
In contrast, for $\underline {R = \sqrt{2}}$ corresponding to the right graph for subtask '''(1)''', the minimum distance is $d_{\rm min} \ \underline {= 1}$.
  
  
'''(4)'''&nbsp; Mit den Ergebnissen von '''(1)''' und '''(3)''' erhält man allgemein bzw. für $R = 1$ (8&ndash;PSK):
+
'''(4)'''&nbsp; Using the results of '''(1)''' and '''(3)''', we obtain in general or for $R = 1$ (8&ndash;PSK):
 
:$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 +  R^2)/6}
 
:$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 +  R^2)/6}
 
  = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2}\hspace{0.3cm}  
 
  = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2}\hspace{0.3cm}  
Line 105: Line 105:
  
  
'''(5)'''&nbsp; Für $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$ ergibt sich folgender Wert:
+
'''(5)'''&nbsp; For $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$, the following value is obtained:
 
:$$\eta =  \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2} = 3/2 \cdot \left [ 1 - \frac{  \sqrt{2} \cdot R }{ 1 +  R^2}\right ]\hspace{0.05cm},$$
 
:$$\eta =  \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 +  R^2} = 3/2 \cdot \left [ 1 - \frac{  \sqrt{2} \cdot R }{ 1 +  R^2}\right ]\hspace{0.05cm},$$
 
:$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 +  R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 +  R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \eta =  3/2 \cdot \left [ 1 - \frac{  \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx  0.634}\hspace{0.05cm}.$$
 
  \eta =  3/2 \cdot \left [ 1 - \frac{  \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx  0.634}\hspace{0.05cm}.$$
  
Für $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$ ergibt sich genau der gleiche Wert.
+
For $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$ exactly the same value results.
  
*Das (stets gewünschte) Maximum der Leistungseffizienz $\eta$ ergibt sich beispielsweise für $R = R_{\rm max}$ &ndash; also für die Signalraumkonstellation auf dem Angabenblatt.  
+
*The (always desired) maximum of the power efficiency $\eta$ results, for example, for $R = R_{\rm max}$ &ndash; i.e. for the signal space constellation in the information section.
*In diesem Fall sind alle Dreiecke aus zwei benachbarten blauen Punkten und dem dazwischenliegenden roten Punkt gleichseitig.  
+
*In this case all triangles of two neighboring blue points and the red point in between are equilateral.
*Auch für $R = R_{\rm min}$ ergeben sich gleichseitige Dreiecke, jetzt aber jeweils gebildet durch zwei rotee und einen blauen Punkt.  
+
*Also for $R = R_{\rm min}$ there are equilateral triangles, but now each formed by two red and one blue point.
*In diesem Fall ist zwar die Kantenlänge $d_{\rm min}$ deutlich kleiner, aber gleichzeitig ergibt sich auch ein kleineres $E_{\rm B}$, so dass die Leistungseffizienz $\eta$ den gleichen Wert besitzt.
+
*In this case the edge length $d_{\rm min}$ is clearly smaller, but at the same time a smaller $E_{\rm B}$ results, so that the power efficiency $\eta$ has the same value.
  
  
Die vorher betrachteten Sonderfälle $R = 1$ (8&ndash;PSK, linke Grafik bei der ersten Teilaufgabe) und $R = \sqrt{2}$ (rechte Grafik) weisen mit $\eta = 0.439$ bzw. $\eta = 0.5$ (gegenüber $\eta = 0.634$) ein merklich kleineres $\eta$ auf.
+
The previously considered special cases $R = 1$ (8&ndash;PSK, left graph in the first subtask) and $R = \sqrt{2}$ (right graph) have a noticeably smaller $\eta$ with $\eta = 0.439$ and $\eta = 0.5$, respectively (compared to $\eta = 0.634$).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 21:48, 15 August 2022

Considered 8–QAM

A signal space constellation with  $M = 8$  signal space points is considered here:

  • Four points lie on a circle with radius  $r = 1$.
  • Four further points lie offset by  $45^\circ$  on a second circle with radius  $R$, where the following shall hold:
$$R_{\rm min} \le R \le R_{\rm max}\hspace{0.05cm},\hspace{0.2cm} R_{\rm min}= \frac{ \sqrt{3}-1}{ \sqrt{2}} \approx 0.518 \hspace{0.05cm},\hspace{0.2cm} R_{\rm max}= \frac{ \sqrt{3}+1}{ \sqrt{2}} \approx 1.932\hspace{0.05cm}.$$

Let the two axes (basis functions) be normalized respectively and denoted  $I$  and  $Q$  for simplicity. For further simplification,  $E = 1$  can be set.

In the question section, we speak of blue and red points. According to the diagram, the blue points lie on the circle with radius  $r = 1$, the red points on the circle with radius  $R$. The case  $R = R_{\rm max}$ is drawn.

The system parameter  $R$  is to be determined in this exercise in such a way that the quotient

$$\eta = \frac{ (d_{\rm min}/2)^2}{ E_{\rm B}} $$

becomes maximum. $\eta$  is a measure for the quality of a modulation alphabet at given transmission energy per bit ("Power Efficiency"). It is calculated from

  • the minimum distance  $d_{\rm min}$, and
  • the bit energy  $E_{\rm B}$.


It must be ensured that  $d_{\rm min}^2$  and  $E_{\rm B}$  are normalized in the same way, but this is already implicit in the exercise.



Notes:



Questions

1

Calculate the average energy  $E_{\rm B}$  per bit depending on  $R$, in particular for  $R = 1$  and  $R = \sqrt{2}$.

$R = 1 \text{:} \hspace{0.55cm} E_{\rm B}\ = \ $

$R = \sqrt{2} \text{:} \hspace{0.2cm} E_{\rm B}\ = \ $

2

Which statements are true for the minimum distance between two signal space points?

For  $R < R_{\rm min}$,  the minimum distance occurs between two red points.
For  $R > R_{\rm max}$,  the minimum distance occurs between two blue points.
For  $R_{\rm min} ≤ R ≤ R_{\rm max}$,  the minimum distance occurs between "red" and "blue".

3

Calculate the minimum distance depending on  $R$, in particular for

$R = 1 \text{:} \hspace{0.55cm} d_{\rm min}\ = \ $

$R = \sqrt{2} \text{:} \hspace{0.2cm} d_{\rm min}\ = \ $

4

Give the power efficiency  $\eta$  in general terms. What  $\eta$  results for  $R = 1$?

$\eta\ = \ $

5

What power efficiency values result for  $R = R_{\rm min}$  and  $R = R_{\rm max}$? Interpretation.

$R = R_{\rm min} \text{:} \hspace{0.35cm} \eta\ = \ $

$R = R_{\rm max} \text{:} \hspace{0.2cm} \eta\ = \ $


Solution

(1)  Because of $M = 8$  ⇒  $b = 3$, the mean signal energy per bit is $E_{\rm B} = E_{\rm S}/3$, where the mean signal energy per symbol ($E_{\rm S}$) is to be calculated as the mean square distance of the signal space points from the origin. With $r = 1$ one obtains:

Special cases of 8–QAM
$$E_{\rm S} = {1}/{8 } \cdot ( 4 \cdot r^2 + 4 \cdot R^2) = ({1 + R^2})/{2 } \hspace{0.3cm}\Rightarrow \hspace{0.3cm} E_{\rm B} = {E_{\rm S}}/{3} = ({1 + R^2})/{6} \hspace{0.05cm}.$$

In particular:

  • For $R = 1$, there is an 8–PSK   ⇒   $E_{\rm S} = 1$ and $E_{\rm B} \ \underline {= 0.333}$ (see left graph).
  • The right graph is valid for $R = \sqrt{2}$. In this case, $E_{\rm B} \ \underline {= 0.5}$.


Note that these energies actually still have to be multiplied by the normalization energy $E$.


(2)  All statements are true:

  • In the drawn example on the information section with $R = R_{\rm max}$, the distance between two neighboring blue points is exactly the same as the distance between a red (outer) and a blue (inner) point.
To calculate the minimum distance
  • For $R > R_{\rm max}$, the distance between two blue points is the smallest.
  • For $R < R_{\rm min}$, the minimum distance occurs between two red points.


(3)  The graphic illustrates the geometric calculation. With "Pythagoras" one obtains:

$$d_{\rm min}^2 =(R/\sqrt{2})^2 + (R/\sqrt{2}-1)^2 = 1 - \sqrt{2} \cdot R + R^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}d_{\rm min} = \sqrt{ 1 - \sqrt{2} \cdot R + R^2} \hspace{0.05cm}.$$

In particular, for $R = 1$ (8–PSK):

$$d_{\rm min} = \sqrt{ 2 - \sqrt{2} } \hspace{0.1cm} \underline{= 0.765} \hspace{0.1cm} (= 2 \cdot \sin (22.5^{\circ}) ) \hspace{0.05cm}.$$

In contrast, for $\underline {R = \sqrt{2}}$ corresponding to the right graph for subtask (1), the minimum distance is $d_{\rm min} \ \underline {= 1}$.


(4)  Using the results of (1) and (3), we obtain in general or for $R = 1$ (8–PSK):

$$\eta = \frac{ d_{\rm min}^2}{ 4 \cdot E_{\rm B}} = \frac{ 1 - \sqrt{2} \cdot R + R^2}{ 4 \cdot (1 + R^2)/6} = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 + R^2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} R = 1: \hspace{0.2cm}\eta = \frac{ 3/2 \cdot(2 - \sqrt{2}) }{ 2} = 3/4 \cdot(2 - \sqrt{2})\hspace{0.1cm} \underline{\approx 0.439}\hspace{0.05cm}.$$


(5)  For $R = R_{\rm min} = (\sqrt{3}-1)/\sqrt{2}$, the following value is obtained:

$$\eta = \frac{ 3/2 \cdot(1 - \sqrt{2} \cdot R + R^2)}{ 1 + R^2} = 3/2 \cdot \left [ 1 - \frac{ \sqrt{2} \cdot R }{ 1 + R^2}\right ]\hspace{0.05cm},$$
$$\sqrt{2} \cdot R = \sqrt{3}- 1\hspace{0.05cm},\hspace{0.2cm} 1 + R^2 = 3 - \sqrt{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta = 3/2 \cdot \left [ 1 - \frac{ \sqrt{3}- 1 }{ 3 - \sqrt{3}}\right ]\hspace{0.1cm} \underline{\approx 0.634}\hspace{0.05cm}.$$

For $R = R_{\rm max}= (\sqrt{3}+1)/\sqrt{2}$ exactly the same value results.

  • The (always desired) maximum of the power efficiency $\eta$ results, for example, for $R = R_{\rm max}$ – i.e. for the signal space constellation in the information section.
  • In this case all triangles of two neighboring blue points and the red point in between are equilateral.
  • Also for $R = R_{\rm min}$ there are equilateral triangles, but now each formed by two red and one blue point.
  • In this case the edge length $d_{\rm min}$ is clearly smaller, but at the same time a smaller $E_{\rm B}$ results, so that the power efficiency $\eta$ has the same value.


The previously considered special cases $R = 1$ (8–PSK, left graph in the first subtask) and $R = \sqrt{2}$ (right graph) have a noticeably smaller $\eta$ with $\eta = 0.439$ and $\eta = 0.5$, respectively (compared to $\eta = 0.634$).