Difference between revisions of "Channel Coding/Some Basics of Algebra"
Line 85: | Line 85: | ||
− | == Examples and | + | == Examples and properties of Galois fields == |
<br> | <br> | ||
− | + | We first check that for the binary number set $Z_2 = \{0, 1\}$ ⇒ $q=2$ (valid for the simple binary code) the eight criteria mentioned on the last page are met, so that we can indeed speak of "${\rm GF}(2)$". You can see the addition– and multiplication table below: | |
:$$Z_2 = \{0, 1\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } | :$$Z_2 = \{0, 1\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } | ||
Line 93: | Line 93: | ||
0 & 0 & 1 \\ | 0 & 0 & 1 \\ | ||
1 & 1 & 0 | 1 & 1 & 0 | ||
− | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{ | + | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } |
\left[ \begin{array}{c|cccccc} \cdot & 0 & 1 \\ \hline | \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 \\ \hline | ||
0 & 0 & 0 \\ | 0 & 0 & 0 \\ | ||
Line 100: | Line 100: | ||
$$ | $$ | ||
− | + | One can see from this representation: | |
− | * | + | *Each element of the addition– and multiplication table of $Z_2$ is again $z_0 = 0$ or $z_0 = 1$ ⇒ the criterion $\rm (A)$ is satisfied.<br> |
− | * | + | *The set $Z_2$ contains the zero element $(\hspace{-0.05cm}N_{\rm A} = z_0 = 0)$ and the one element $(\hspace{-0.05cm}N_{\rm M} = z_1 = 1)$ ⇒ the criteria $\rm (B)$ and $\rm (C)$ are satisfied.<br> |
− | * | + | *The additive inverses ${\rm Inv_A}(0) = 0$ and ${\rm Inv_A}(1) = -1$ exist and belong to $Z_2$. |
− | * | + | *Similarly, the multiplicative inverse ${\rm Inv_M}(1) = 1$ ⇒ criteria $\rm (D)$ and $\rm (E)$ are satisfied.<br> |
− | * | + | *The validity of the commutative law $\rm (F)$ in the set $Z_2$ can be recognized by the symmetry with respect to the table diagonals. |
− | * | + | *The criteria $\rm (G)$ and $\rm (H)$ are also satisfied here ⇒ all eight criteria are satisfied ⇒ $Z_2 = \rm GF(2)$.<br> |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 1:}$ The set of numbers $Z_3 = \{0, 1, 2\}$ ⇒ $q = 3$ satisfies all eight criteria and is thus a Galois field $\rm GF(3)$: |
:$$Z_3 = \{0, 1, 2\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } | :$$Z_3 = \{0, 1, 2\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } | ||
Line 120: | Line 120: | ||
1 & 1 & 2 & 0 \\ | 1 & 1 & 2 & 0 \\ | ||
2 & 2 & 0 & 1 | 2 & 2 & 0 & 1 | ||
− | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{ | + | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } |
\left[ \begin{array}{c {{!}} cccccc} \cdot & 0 & 1 & 2\\ \hline | \left[ \begin{array}{c {{!}} cccccc} \cdot & 0 & 1 & 2\\ \hline | ||
0 & 0 & 0 & 0 \\ | 0 & 0 & 0 & 0 \\ | ||
Line 130: | Line 130: | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 2:}$ In contrast, the set of numbers $Z_4 = \{0, 1, 2, 3\}$ ⇒ $q = 4$ is not a Galois field. |
− | * | + | *The reason for this is that there is no multiplicative inverse to the element $z_2 = 2$ here. For a Galois field it would have to be true: $2 \cdot {\rm Inv_M}(2) = 1$. |
− | * | + | *But in the multiplication table there is no entry with "$1$" in the third row and third column $($each valid for the multiplicand $z_2 = 2)$ . |
:$$Z_4 = \{0, 1, 2, 3\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } | :$$Z_4 = \{0, 1, 2, 3\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } | ||
Line 140: | Line 140: | ||
2 & 2 & 3 & 0 & 1\\ | 2 & 2 & 3 & 0 & 1\\ | ||
3 & 3 & 0 & 1 & 2 | 3 & 3 & 0 & 1 & 2 | ||
− | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{ | + | \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } |
\left[ \begin{array}{c {{!}} cccccc} \cdot& 0 & 1 & 2 & 3\\ \hline | \left[ \begin{array}{c {{!}} cccccc} \cdot& 0 & 1 & 2 & 3\\ \hline | ||
0 & 0 & 0 & 0 & 0\\ | 0 & 0 & 0 & 0 & 0\\ | ||
Line 151: | Line 151: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Generalization (without proof for now):}$ |
− | * | + | *A Galois field ${\rm GF}(q)$ can be formed in the manner described here as [[Channel_Coding/Some_Basics_of_Algebra#Definition_and_examples_of_an_algebraic_ring| "Ring"]] of integer sizes modulo $q$ only if $q$ is a prime number: <br> $q = 2$, $q = 3$, $q = 5$, $q = 7$, $q = 11$, ...<br> |
− | * | + | *But if the order $q$ can be expressed in the form $q = P^m$ with a prime $P$ and integer $m$ , the Galois field ${\rm GF}(q)$ can be found via a [[Channel_Coding/Extension_Field#Generalized_Definition_of_an_Extension. C3.B6rpers|extension fields]] find.}}<br> |
− | == | + | == Group, ring, field - basic algebraic concepts == |
<br> | <br> | ||
− | + | On the first pages, some basic algebraic terms have already been mentioned, without their meanings having been explained in more detail. This is to be made up now in all shortness from view of a communication engineer, whereby we mainly refer to the representation in [Fri96]. [Fri96]<ref name='Fri96'>Friedrichs, B.: ''Kanalcodierung – Grundlagen und Anwendungen in modernen Kommunikationssystemen.'' Berlin – Heidelberg: Springer, 1996.</ref> und [KM+08]<ref name='KM+08'>Kötter, R.; Mayer, T.; Tüchler, M.; Schreckenbach, F.; Brauchle, J.: ''Channel Coding.'' Lecture manuscript, Chair of Communications Engineering, TU Munich, 2008.</ref> . To summarize:<br> | |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ A $\rm Galois field$ ${\rm GF}(q)$ is a ''field'' with a finite number $(q)$ of elements ⇒ <i>finite field</i>. Each field is again a special case of a ''ring'', which itself can be represented again as a special case of an ''Abelian group''.}}<br> |
− | [[File:EN_KC_T_2_1_S2.png|right|frame| | + | [[File:EN_KC_T_2_1_S2.png|right|frame|Algebraic relations between group, ring and field|class=fit]] |
− | + | The diagram illustrates step by step how the following subordinate sets arise from a set by definition of addition, multiplication and division within this set $\mathcal{M}$ : | |
− | * | + | *Abelian group $\mathcal{G}$ , |
− | * | + | *ring $\mathcal{R}$, |
− | * | + | *field $\mathcal{F}$, |
− | * | + | *finite field $\mathcal{F}_q$ or Galois field ${\rm GF}(q)$. |
− | + | On the next two pages, the algebraic terms mentioned here will be discussed in more detail. | |
− | * | + | *For understanding the Reed–Solomon codes, however, this knowledge is not absolutely necessary. |
− | * | + | *So you could jump directly to the chapter [[Channel_Coding/Extension_Field| extension fields]] .<br> |
− | == Definition | + | == Definition and examples of an algebraic group == |
<br> | <br> | ||
− | + | For the general definitions of group (and later ring) we assume a set with infinitely many elements: | |
::<math>\mathcal{M} = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}\}\hspace{0.05cm}. </math> | ::<math>\mathcal{M} = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}\}\hspace{0.05cm}. </math> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ A $\text{algebraic group}$ $(\mathcal{G}, +)$ is an (arbitrary) subset $\mathcal{G} ⊂ \mathcal{M}$ together with an additive linkage ("$+$") defined between all elements, but only if the following properties are necessarily satisfied: |
− | * | + | *For all $z_i, z_j ∈ \mathcal{G}$ holds $(z_i + z_j) ∈ \mathcal{G}$ ⇒ <i>Closure</i>–criterion for "$+$".<br> |
− | * | + | *There is always an element neutral with respect to addition $N_{\rm A} ∈ \mathcal{G}$, so that for all $z_i ∈ \mathcal{G}$ holds: $z_i +N_{\rm A} = z_i$. Given a group of numbers, $N_{\rm A} \equiv 0$.<br> |
− | * | + | *For all $z_i ∈ \mathcal{G}$ there is also an element inverse with respect to addition ${\rm Inv_A}(z_i) ∈ \mathcal{G}$ with property $z_i + {\rm Inv_A}(z_i)= N_{\rm A} $. <br>For a group of numbers ${\rm Inv_A}(z_i) =- z_i$.<br> |
− | * | + | *For all $z_i, z_j, z_k ∈ \mathcal{G}$ holds: $z_i + (z_j + z_k)= (z_i + z_j) + z_k$ ⇒ ''Associative law'' for "$+$".<br><br> |
− | + | If in addition for all $z_i, z_j ∈ \mathcal{G}$ the ''commutative law'' $z_i + z_j= z_j + z_i$ is satisfied, one speaks of a ''commutative group'' or an ''Abelian group'', named after the Norwegian mathematician [https://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Hendrik Abel].}}<br> | |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Examples of algebraic groups:}$ |
− | '''(1)''' | + | '''(1)''' The <i>set of rational numbers</i> is defined as the set of all quotients $I/J$ with integers $I$ and $J ≠ 0$. |
− | : | + | :This set is a group $(\mathcal{G}, +)$ with respect to addition, since |
− | :* | + | :*for all $a ∈ \mathcal{G}$ and $b ∈ \mathcal{G}$ also the sum $a+b$ belongs again to $\mathcal{G}$ ,<br> |
− | :* | + | :*the associative law applies,<br> |
− | :* | + | :*with $ N_{\rm A} = 0$ the neutral element of the addition is contained in $\mathcal{G}$ and<br> |
− | :* | + | :*it exists for each $a$ the additive inverse ${\rm Inv_A}(a) = -a$ .<br> |
− | : | + | :Since moreover the commutative law is fulfilled, it is an <i>Abelian group</i>.<br> |
− | '''(2)''' | + | '''(2)''' The <i>set of natural numbers</i> ⇒ $\{0, 1, 2, \text{...}\}$ is not an algebraic group with respect to addition, |
− | :* | + | :*since for no single element $z_i$ there exists the additive inverse ${\rm Inv_A}(z_i) = -z_i$ .<br> |
− | '''(3)''' | + | '''(3)''' The <i>bounded set of natural numbers</i> ⇒ $\{0, 1, 2, \text{...}\hspace{0.05cm}, q-1\}$ on the other hand then satisfies the conditions on a group $(\mathcal{G}, +)$, |
− | :* | + | :*if one defines the addition modulo $q$ . |
− | '''(4)''' | + | '''(4)''' On the other hand, $\{1, 2, 3, \text{...}\hspace{0.05cm},q\}$ is not a group because the neutral element of addition $(N_{\rm A} = 0)$ is missing.}}<br> |
− | == Definition and | + | == Definition and examples of an algebraic ring == |
<br> | <br> | ||
Entsprechend der [[Channel_Coding/Einige_Grundlagen_der_Algebra#Gruppe.2C_Ring.2C_K.C3.B6rper_.E2.80.93_algebraische_Grundbegriffe |Übersichtsgrafik]] kommt man von der Gruppe $(\mathcal{G}, +)$ durch Definition einer zweiten Rechenoperation – der Multiplikation ("$\cdot$") – zum Ring $(\mathcal{R}, +, \cdot)$. Man benötigt hierfür also neben einer Additionstabelle auch eine Multiplikationstabelle.<br> | Entsprechend der [[Channel_Coding/Einige_Grundlagen_der_Algebra#Gruppe.2C_Ring.2C_K.C3.B6rper_.E2.80.93_algebraische_Grundbegriffe |Übersichtsgrafik]] kommt man von der Gruppe $(\mathcal{G}, +)$ durch Definition einer zweiten Rechenoperation – der Multiplikation ("$\cdot$") – zum Ring $(\mathcal{R}, +, \cdot)$. Man benötigt hierfür also neben einer Additionstabelle auch eine Multiplikationstabelle.<br> |
Revision as of 21:54, 22 August 2022
Contents
- 1 # OVERVIEW OF THE SECOND MAIN CHAPTER #
- 2 Definition of a Galois field
- 3 Examples and properties of Galois fields
- 4 Group, ring, field - basic algebraic concepts
- 5 Definition and examples of an algebraic group
- 6 Definition and examples of an algebraic ring
- 7 Aufgaben zum Kapitel
- 8 Quellenverzeichnis
# OVERVIEW OF THE SECOND MAIN CHAPTER #
This chapter discusses the Reed-Solomon codes, invented in the early 1960s by Irving Stoy Reed and Gustave Solomon . Unlike binary block codes, these are based on a Galois field ${\rm GF}(2^m)$ with $m > 1$. So they work with multilevel symbols instead of binary characters (bits).
Specifically, this chapter covers:
- The basics of linear algebra: set, group, ring, field, finite field,
- the definition of extension fields ⇒ ${\rm GF}(2^m)$ and the corresponding operations,
- the meaning of irreducible polynomials and primitive elements,
- the description and realization possibilities of a Reed-Solomon code,
- the error correction of such a code at the binary ersaure channel (BEC),
- the decoding using the Error Locator Polynomial ⇒ Bounded Distance Decoding (BDD),
- the block error probability of Reed-Solomon codes and typical applications.
Definition of a Galois field
Before we can turn to the description of Reed–Solomon codes, we need some basic algebraic notions. We begin with the properties of the Galois field ${\rm GF}(q)$, named after the Frenchman Évariste Galois, whose biography is rather unusual for a mathematician.
$\text{Definition:}$ A $\rm Galois\:field$ ${\rm GF}(q)$ is a finite field with $q$ elements $z_0$, $z_1$, ... , $z_{q-1}$, if the eight statements listed below $\rm (A)$ ... $\rm (H)$ with respect to addition ("$+$") and multiplication ("$\cdot $") are true.
- Addition and multiplication are to be understood here modulo $q$ .
- The $\rm order$ $q$ indicates the number of elements of the Galois field
.
$\text{Criteria of a Galois field:}$
$\rm (A)$ ${\rm GF}(q)$ is closed $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Closure$:
- \[\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j)\in {\rm GF}(q),\hspace{0.15cm}(z_i \cdot z_j)\in {\rm GF}(q) \hspace{0.05cm}. \]
$\rm (B)$ There is a neutral element $N_{\rm A}$ with respect to addition, the so-called zero element. $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}"$:
- \[\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_i \hspace{0.25cm} \Rightarrow \hspace{0.25cm} z_j = N_{\rm A} = \text{ 0} \hspace{0.05cm}.\]
$\rm (C)$ There is a neutral element $N_{\rm M}$ with respect to multiplication, the so-called identity element $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Identity \ for \ "\hspace{-0.05cm}·\hspace{0.05cm}"$:
- \[\exists \hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot z_j = z_i \hspace{0.3cm}\Rightarrow \hspace{0.3cm} z_j = N_{\rm M} = {1} \hspace{0.05cm}. \]
$\rm (D)$ For each $z_i$ there exists an additive inverse ${\rm Inv_A}(z_i)$ $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}+\hspace{0.05cm}"$:
- \[\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_A}(z_i) \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + {\rm Inv_A}(z_i) = N_{\rm A} = {0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{kurz:}\hspace{0.3cm} {\rm Inv_A}(z_i) = - z_i \hspace{0.05cm}. \]
$\rm (E)$ For each $z_i$ except the zero element, there exists the multiplicative inverse ${\rm Inv_M}(z_i)$ $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Inverse \ for \ "\hspace{-0.05cm}\cdot\hspace{0.05cm}"$:
- \[\forall \hspace{0.15cm} z_i \in {\rm GF}(q),\hspace{0.15cm} z_i \ne N_{\rm A}, \hspace{0.15cm} \exists \hspace{0.15cm} {\rm Inv_M}(z_i) \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i \cdot {\rm Inv_M}(z_i) = N_{\rm M} = {1}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{kurz:}\hspace{0.3cm} {\rm Inv_M}(z_i) = z_i^{-1} \hspace{0.05cm}. \]
$\rm (F)$ For addition and multiplication the commutative law applies in each case $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Commutative \ Law$:
- \[\forall \hspace{0.15cm} z_i,\hspace{0.15cm} z_j \in {\rm GF}(q)\text{:} \hspace{0.25cm}z_i + z_j = z_j + z_i ,\hspace{0.15cm}z_i \cdot z_j = z_j \cdot z_i \hspace{0.05cm}.\]
$\rm (G)$ For addition and multiplication, the associative law applies in each case $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Associative \ Law$:
- \[\forall \hspace{0.15cm} z_i,\hspace{0.1cm} z_j ,\hspace{0.1cm} z_k \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j) + z_k = z_i + (z_j + z_k ),\hspace{0.15cm}(z_i \cdot z_j) \cdot z_k = z_i \cdot (z_j \cdot z_k ) \hspace{0.05cm}.\]
$\rm (H)$ For the combination "addition – multiplication" the distributive law is valid $\hspace{0.2cm}\Rightarrow \hspace{0.2cm}\rm Distributive \ Law$:
- \[\forall \hspace{0.15cm} z_i,\hspace{0.15cm} z_j ,\hspace{0.15cm} z_k \in {\rm GF}(q)\text{:} \hspace{0.25cm}(z_i + z_j) \cdot z_k = z_i \cdot z_k + z_j \cdot z_k \hspace{0.05cm}.\]
Examples and properties of Galois fields
We first check that for the binary number set $Z_2 = \{0, 1\}$ ⇒ $q=2$ (valid for the simple binary code) the eight criteria mentioned on the last page are met, so that we can indeed speak of "${\rm GF}(2)$". You can see the addition– and multiplication table below:
- $$Z_2 = \{0, 1\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c|cccccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c|cccccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(2) . $$
One can see from this representation:
- Each element of the addition– and multiplication table of $Z_2$ is again $z_0 = 0$ or $z_0 = 1$ ⇒ the criterion $\rm (A)$ is satisfied.
- The set $Z_2$ contains the zero element $(\hspace{-0.05cm}N_{\rm A} = z_0 = 0)$ and the one element $(\hspace{-0.05cm}N_{\rm M} = z_1 = 1)$ ⇒ the criteria $\rm (B)$ and $\rm (C)$ are satisfied.
- The additive inverses ${\rm Inv_A}(0) = 0$ and ${\rm Inv_A}(1) = -1$ exist and belong to $Z_2$.
- Similarly, the multiplicative inverse ${\rm Inv_M}(1) = 1$ ⇒ criteria $\rm (D)$ and $\rm (E)$ are satisfied.
- The validity of the commutative law $\rm (F)$ in the set $Z_2$ can be recognized by the symmetry with respect to the table diagonals.
- The criteria $\rm (G)$ and $\rm (H)$ are also satisfied here ⇒ all eight criteria are satisfied ⇒ $Z_2 = \rm GF(2)$.
$\text{Example 1:}$ The set of numbers $Z_3 = \{0, 1, 2\}$ ⇒ $q = 3$ satisfies all eight criteria and is thus a Galois field $\rm GF(3)$:
- $$Z_3 = \{0, 1, 2\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c | cccccc} + & 0 & 1 & 2\\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c | cccccc} \cdot & 0 & 1 & 2\\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2& 0 & 2 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm GF}(3) . $$
$\text{Example 2:}$ In contrast, the set of numbers $Z_4 = \{0, 1, 2, 3\}$ ⇒ $q = 4$ is not a Galois field.
- The reason for this is that there is no multiplicative inverse to the element $z_2 = 2$ here. For a Galois field it would have to be true: $2 \cdot {\rm Inv_M}(2) = 1$.
- But in the multiplication table there is no entry with "$1$" in the third row and third column $($each valid for the multiplicand $z_2 = 2)$ .
- $$Z_4 = \{0, 1, 2, 3\}\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{Addition: } \left[ \begin{array}{c | cccccc} + & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 2 & 3 & 0\\ 2 & 2 & 3 & 0 & 1\\ 3 & 3 & 0 & 1 & 2 \end{array} \right] \hspace{-0.1cm} ,\hspace{0.25cm}\text{Multiplication: } \left[ \begin{array}{c | cccccc} \cdot& 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 2 & 3\\ 2 & 0 & 2 & 0 & 2\\ 3 & 0 & 3 & 2 & 1 \end{array} \right]\hspace{0.25cm} \Rightarrow\hspace{0.25cm}\text{kein }{\rm GF}(4) . $$
$\text{Generalization (without proof for now):}$
- A Galois field ${\rm GF}(q)$ can be formed in the manner described here as "Ring" of integer sizes modulo $q$ only if $q$ is a prime number:
$q = 2$, $q = 3$, $q = 5$, $q = 7$, $q = 11$, ...
- But if the order $q$ can be expressed in the form $q = P^m$ with a prime $P$ and integer $m$ , the Galois field ${\rm GF}(q)$ can be found via a extension fields find.
Group, ring, field - basic algebraic concepts
On the first pages, some basic algebraic terms have already been mentioned, without their meanings having been explained in more detail. This is to be made up now in all shortness from view of a communication engineer, whereby we mainly refer to the representation in [Fri96]. [Fri96][1] und [KM+08][2] . To summarize:
$\text{Definition:}$ A $\rm Galois field$ ${\rm GF}(q)$ is a field with a finite number $(q)$ of elements ⇒ finite field. Each field is again a special case of a ring, which itself can be represented again as a special case of an Abelian group.
The diagram illustrates step by step how the following subordinate sets arise from a set by definition of addition, multiplication and division within this set $\mathcal{M}$ :
- Abelian group $\mathcal{G}$ ,
- ring $\mathcal{R}$,
- field $\mathcal{F}$,
- finite field $\mathcal{F}_q$ or Galois field ${\rm GF}(q)$.
On the next two pages, the algebraic terms mentioned here will be discussed in more detail.
- For understanding the Reed–Solomon codes, however, this knowledge is not absolutely necessary.
- So you could jump directly to the chapter extension fields .
Definition and examples of an algebraic group
For the general definitions of group (and later ring) we assume a set with infinitely many elements:
- \[\mathcal{M} = \{\hspace{0.1cm}z_1,\hspace{0.1cm} z_2,\hspace{0.1cm} z_3 ,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}\}\hspace{0.05cm}. \]
$\text{Definition:}$ A $\text{algebraic group}$ $(\mathcal{G}, +)$ is an (arbitrary) subset $\mathcal{G} ⊂ \mathcal{M}$ together with an additive linkage ("$+$") defined between all elements, but only if the following properties are necessarily satisfied:
- For all $z_i, z_j ∈ \mathcal{G}$ holds $(z_i + z_j) ∈ \mathcal{G}$ ⇒ Closure–criterion for "$+$".
- There is always an element neutral with respect to addition $N_{\rm A} ∈ \mathcal{G}$, so that for all $z_i ∈ \mathcal{G}$ holds: $z_i +N_{\rm A} = z_i$. Given a group of numbers, $N_{\rm A} \equiv 0$.
- For all $z_i ∈ \mathcal{G}$ there is also an element inverse with respect to addition ${\rm Inv_A}(z_i) ∈ \mathcal{G}$ with property $z_i + {\rm Inv_A}(z_i)= N_{\rm A} $.
For a group of numbers ${\rm Inv_A}(z_i) =- z_i$.
- For all $z_i, z_j, z_k ∈ \mathcal{G}$ holds: $z_i + (z_j + z_k)= (z_i + z_j) + z_k$ ⇒ Associative law for "$+$".
If in addition for all $z_i, z_j ∈ \mathcal{G}$ the commutative law $z_i + z_j= z_j + z_i$ is satisfied, one speaks of a commutative group or an Abelian group, named after the Norwegian mathematician Niels Hendrik Abel.
$\text{Examples of algebraic groups:}$
(1) The set of rational numbers is defined as the set of all quotients $I/J$ with integers $I$ and $J ≠ 0$.
- This set is a group $(\mathcal{G}, +)$ with respect to addition, since
- for all $a ∈ \mathcal{G}$ and $b ∈ \mathcal{G}$ also the sum $a+b$ belongs again to $\mathcal{G}$ ,
- the associative law applies,
- with $ N_{\rm A} = 0$ the neutral element of the addition is contained in $\mathcal{G}$ and
- it exists for each $a$ the additive inverse ${\rm Inv_A}(a) = -a$ .
- for all $a ∈ \mathcal{G}$ and $b ∈ \mathcal{G}$ also the sum $a+b$ belongs again to $\mathcal{G}$ ,
- Since moreover the commutative law is fulfilled, it is an Abelian group.
(2) The set of natural numbers ⇒ $\{0, 1, 2, \text{...}\}$ is not an algebraic group with respect to addition,
- since for no single element $z_i$ there exists the additive inverse ${\rm Inv_A}(z_i) = -z_i$ .
- since for no single element $z_i$ there exists the additive inverse ${\rm Inv_A}(z_i) = -z_i$ .
(3) The bounded set of natural numbers ⇒ $\{0, 1, 2, \text{...}\hspace{0.05cm}, q-1\}$ on the other hand then satisfies the conditions on a group $(\mathcal{G}, +)$,
- if one defines the addition modulo $q$ .
(4) On the other hand, $\{1, 2, 3, \text{...}\hspace{0.05cm},q\}$ is not a group because the neutral element of addition $(N_{\rm A} = 0)$ is missing.
Definition and examples of an algebraic ring
Entsprechend der Übersichtsgrafik kommt man von der Gruppe $(\mathcal{G}, +)$ durch Definition einer zweiten Rechenoperation – der Multiplikation ("$\cdot$") – zum Ring $(\mathcal{R}, +, \cdot)$. Man benötigt hierfür also neben einer Additionstabelle auch eine Multiplikationstabelle.
$\text{Definition:}$ Ein $\text{algebraischer Ring}$ $(\mathcal{R}, +, \cdot)$ ist eine Teilmenge $\mathcal{R} ⊂ \mathcal{G} ⊂ \mathcal{M}$ zusammen mit zwei in dieser Menge definierten Rechenoperationen, der Addition ("$+$") und der Multiplikation ("$·$"). Dabei müssen die folgenden Eigenschaften erfüllt werden:
- Hinsichtlich der Addition ist der Ring $(\mathcal{R}, +, \cdot)$ eine Abelsche Gruppe $(\mathcal{G}, +)$.
- Zusätzlich gilt für alle $z_i, z_j ∈ \mathcal{R}$ auch $(z_i \cdot z_j) ∈ \mathcal{R}$ ⇒ Closure–Kriterium für "$\cdot$".
- Es gibt stets auch ein hinsichtlich der Multiplikation neutrales Element $N_{\rm M} ∈ \mathcal{R}$, so dass für alle $z_i ∈ \mathcal{R}$ gilt: $z_i \cdot N_{\rm M} = z_i$.
Bei einer Zahlengruppe ist stets $N_{\rm M} = 1$.
- Für alle $z_i, z_j, z_k ∈ \mathcal{R}$ gilt: $z_i + (z_j + z_k)= (z_i + z_j) + z_k$ ⇒ Assoziativgesetz für "$\cdot $".
- Für alle $z_i, z_j, z_k ∈ \mathcal{R}$ gilt: $z_i \cdot (z_j + z_k) = z_i \cdot z_j + z_i \cdot z_k$ ⇒ Distributivgesetz für "$\cdot $".
Weiter sollen die folgenden Vereinbarungen gelten:
- Ein Ring $(\mathcal{R}, +, \cdot)$ ist nicht notwendigerweise kommutativ. Gilt tatsächlich auch für alle Elemente $z_i, z_j ∈ \mathcal{R}$ das Kommutativgesetz $z_i \cdot z_j= z_j \cdot z_i$ hinsichtlich der Multiplikation, so spricht man in der Fachliteratur von einem kommutativen Ring.
- Existiert für jedes Element $z_i ∈ \mathcal{R}$ mit Ausnahme von $N_{\rm A}$ (neutrales Element der Addition, Nullelement) ein hinsichtlich der Multiplikation inverses Element ${\rm Inv_M}(z_i)$, so dass $z_i \cdot {\rm Inv_M}(z_i) = 1$ gilt, so liegt ein Divisionsring (englisch: Division Ring) vor.
- Der Ring ist nullteilerfrei (englisch: free of zero devisors), wenn aus $z_i \cdot z_j = 0$ zwingend $z_i = 0$ oder $z_j = 0$ folgt. In der abstrakten Algebra ist ein Nullteiler eines Ringes ein vom Nullelement verschiedenes Element $z_i$, falls es ein Element $z_j \ne 0$ gibt, so dass das Produkt $z_i \cdot z_j = 0$ ist.
- Ein kommutativer nullteilerfreier Ring wird als Integritätsring oder Integritätsbereich (englisch: Integral Domain) bezeichnet.
$\text{Fazit:}$
Vergleicht man die Definitionen von Gruppe, Ring (siehe oben), Körper und Galoisfeld, so erkennt man, dass ein Galoisfeld ${\rm GF}(q)$
- ein endlicher Körper (englisch: Field ) mit $q$ Elementen ist,
- gleichzeitig als Commutative Division Ring aufgefasst werden kann, und auch
- einen Integritätsbereich (englisch: Integral Domain ) beschreibt.
Aufgaben zum Kapitel
Aufgabe 2.1: Gruppe, Ring, Körper
Aufgabe 2.1Z: Welche Tabellen beschreiben Gruppen?
Aufgabe 2.2: Eigenschaften von Galoisfeldern
Aufgabe 2.2Z: Galoisfeld GF(5)
Quellenverzeichnis