Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.17Z: Rayleigh and Rice Distribution"

From LNTwww
Line 78: Line 78:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The <u>second solution</u> is correct:
+
'''(1)'''&nbsp; The&nbsp; <u>second solution</u>&nbsp; is correct:
 
*The upper graph shows approximately a Gaussian distribution and belongs accordingly to the Rice distribution.
 
*The upper graph shows approximately a Gaussian distribution and belongs accordingly to the Rice distribution.
  
  
  
'''(2)'''&nbsp; You can see from the graph: The mean value of the Gaussian distribution is C=4_ and the standard deviation is σn=1_.  
+
'''(2)'''&nbsp; You can see from the graph:&nbsp; The mean value of the Gaussian distribution is&nbsp; C=4_ and the standard deviation is σn=1_.  
*It was given that C and σn were integers.
+
*It was given that&nbsp; C&nbsp; and&nbsp; σn&nbsp; were integers.&nbsp; Thus the two density functions are:
*Thus the two density functions are:
 
 
:$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
:$$p_{\rm I} (\eta) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\eta}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 + 16}{2 }\right ] \cdot {\rm I }_0 (4\eta ) \approx
Line 93: Line 92:
  
  
'''(3)'''&nbsp; <u>Solution 2</u> is correct, as can already be seen from the graph. A calculation confirms this result:
+
'''(3)'''&nbsp; <u>Solution 2</u>&nbsp; is correct,&nbsp; as can already be seen from the graph.&nbsp; A calculation confirms this result:
 
:σ2Rice = σ2n=1,
 
:σ2Rice = σ2n=1,
 
:$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2  \cdot  ({2 - {\pi}/{2 }})  \approx 0.429   
 
:$$ \sigma_{\rm Rayl}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sigma_n^2  \cdot  ({2 - {\pi}/{2 }})  \approx 0.429   
Line 99: Line 98:
  
  
'''(4)'''&nbsp;  In general, the probability that y is greater than a value y0 is equal to
+
'''(4)'''&nbsp;  In general,&nbsp; the probability that&nbsp; y&nbsp; is greater than a certain value&nbsp; y0&nbsp; is equal to
 
:$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2}
 
:$${\rm Pr}(y > y_0) = \int_{y_0}^{\infty} \frac{\eta}{\sigma_n^2}
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta   
 
  \cdot {\rm exp } \left [ - \frac{\eta^2 }{2 \sigma_n^2}\right ] \,{\rm d} \eta   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*With the substitution x2=η2/(2σ2n) can be written for this:
+
*With the substitution&nbsp; x2=η2/(2σ2n)&nbsp; can be written for this:
 
:$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x
 
:$${\rm Pr}(y > y_0) = 2 \cdot \hspace{-0.05cm}\int_{y_0/(\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n)}^{\infty} \hspace{-0.5cm}x
 
  \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty}
 
  \cdot {\rm e }^{ - x^2} \,{\rm d} x = \left [{\rm e }^{ - x^2} \right ]_{\sqrt{2}\hspace{0.03cm} \cdot \hspace{0.03cm} \sigma_n}^{\infty}
 
  = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
 
  = {\rm exp } \left [ -\frac{ y_0^2 }{2 \sigma_n^2 }\right ]\hspace{0.05cm}.$$
  
*Here the indefinite integral given in the front was used. In particular:
+
*Here the indefinite integral given in the front was used.&nbsp; In particular:
 
:Pr(y>σn) = e0.560.7%_,
 
:Pr(y>σn) = e0.560.7%_,
 
:Pr(y>2σn) = e2.013.5%_,
 
:Pr(y>2σn) = e2.013.5%_,

Revision as of 13:54, 30 August 2022

Rice (top) and Rayleigh (bottom)

For the study of transmission systems,  the Rayleigh and Rice distributions are of great importance.  In the following let  y  be a Rayleigh or a Rice distributed random variable and  η  in each case a realization of it.

  • The  "Rayleigh distribution"  results thereby for the probability density function  (PDF)  of a random variable  y,  which results from the two Gaussian distributed and statistically independent components  u  and  v  (both with the standard deviation  σn)  as follows:
y=u2+v2py(η)=ησ2nexp[η22σ2n].
  • The  "Rice distribution"  is obtained under otherwise identical boundary conditions for the application case where a constant  C  is still added to one of the two components,  for example:
y=(u+C)2+v2py(η)=ησ2nexp[η2+C22σ2n]I0[ηCσ2n].

In this equation,  I0(x)  denotes the  "modified zero-order Bessel function".

In the graph,  the two probability density functions are shown,  but it is not indicated whether  pI(η)  or  pII(η)  belong to a Rayleigh or a Rice distribution,  respectively.

  • It is only known that one Rayleigh and one Rice distribution is shown.
  • The parameter  σn  is the same for both distributions.


For your decision whether to assign  pI(η)  or  pII(η)  to the Rice distribution and for the determination of the PDF parameters you can consider the following statements:

  • For large values of the quotient  C/σn,  the Rice distribution can be approximated by a Gaussian distribution with mean  C  and standard deviation  σn
  • The values of  C  and  σn  underlying the graph are integers.


Regarding the Rayleigh distribution,  note:

  • The same  σn  is used for both distributions.
  • For the standard deviation  (root of the variance)  of the Rayleigh distribution holds:
σy=σn2π/20.655σn.
  • For the standard deviation or for the variance of the Rice distribution in general only a complicated expression with hypergeometric functions can be given,  otherwise only an approximation for  Cσn  corresponding to the Gaussian distribution.




Notes:

  • Given is also the following indefinite integral:
xex2dx=1/2ex2+const.



Questions

1

Assign the graphs to the Rayleigh and Rice distributions, respectively.

pI(η)  corresponds to the Rayleigh distribution,  pII(η)  to the Rice distribution.
pI(η)  corresponds to the Rice distribution,  pII(η)  to the Rayleigh distribution.

2

Give the parameters of the Rice distribution shown here.

C= 

σn = 

3

Which distribution has a larger variance?

The Rayleigh distribution,
the Rice distribution?

4

Calculate the excess probabilities of the Rayleigh distribution.

Pr(y>σn)= 

 %
Pr(y>2σn) = 

 %
Pr(y>3σn) = 

 %


Solution

(1)  The  second solution  is correct:

  • The upper graph shows approximately a Gaussian distribution and belongs accordingly to the Rice distribution.


(2)  You can see from the graph:  The mean value of the Gaussian distribution is  C=4_ and the standard deviation is σn=1_.

  • It was given that  C  and  σn  were integers.  Thus the two density functions are:
pI(η) = ηexp[η2+162]I0(4η)12πexp[(η4)22],
pII(η) = ηexp[η22].


(3)  Solution 2  is correct,  as can already be seen from the graph.  A calculation confirms this result:

σ2Rice = σ2n=1,
σ2Rayl = σ2n(2π/2)0.429.


(4)  In general,  the probability that  y  is greater than a certain value  y0  is equal to

Pr(y>y0)=y0ησ2nexp[η22σ2n]dη.
  • With the substitution  x2=η2/(2σ2n)  can be written for this:
Pr(y>y0)=2y0/(2σn)xex2dx=[ex2]2σn=exp[y202σ2n].
  • Here the indefinite integral given in the front was used.  In particular:
Pr(y>σn) = e0.560.7%_,
Pr(y>2σn) = e2.013.5%_,
Pr(y>3σn) = e4.51.1%_.