Difference between revisions of "Aufgaben:Exercise 2.5: Three Variants of GF(2 power 4)"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2508__KC_A_2_5.png|right|frame|Potenzen zweier verschiedener Erweiterungskörper über  $\rm GF(2^4)$ – eine nicht ganz vollständige Liste]]
+
[[File:P_ID2508__KC_A_2_5.png|right|frame|Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list]]
Irreduzible und primitive Polynome haben große Bedeutung für die Beschreibung von Verfahren zur Fehlerkorrektur. In [LN97] findet man zum Beispiel die folgenden irreduziblen Polynome vom Grad  $m = 4$:
+
Irreducible and primitive polynomials have great importance in the description of error correction methods. For example, in [LN97] one finds the following irreducible polynomials of degree  $m = 4$:
 
* $p_1(x) = x^4 + x +1$,
 
* $p_1(x) = x^4 + x +1$,
 
* $p_2(x) = x^4 + x^3 + 1$,
 
* $p_2(x) = x^4 + x^3 + 1$,
Line 8: Line 8:
  
  
Die beiden ersten Polynome sind auch primitiv. Dies erkennt man aus den Potenztabellen, die rechts angegeben sind – die untere Tabelle  $\rm (B)$  allerdings nicht ganz vollständig.  
+
The first two polynomials are also primitive. This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.  
*Aus beiden Tabellen erkennt man, dass alle Potenzen  $\alpha^i$  für  $1 ≤ i ≤ 14$  in der Polynomdarstellung ungleich  $1$  sind. Erst für  $i = 15$  ergibt sich
+
*From both tables we see that all powers  $\alpha^i$  for  $1 ≤ i ≤ 14$  are unequal  $1$  in the polynomial representation. Only for  $i = 15$  does it follow that
 
:$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Koeffizientenvektor\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
 
:$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Koeffizientenvektor\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
*Nicht angegeben wird, ob sich die  Tabellen  $\rm (A)$  und  $\rm (B)$  aus dem Polynom  $p_1(x) = x^4 + x + 1$  oder aus  $p_2(x) =x^4 + x^3 + 1$  ergibt. Diese Zuordnungen sollen Sie in den Teilaufgaben '''(1)''' und '''(2)''' treffen.  
+
*It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial  $p_1(x) = x^4 + x + 1$  or from  $p_2(x) =x^4 + x^3 + 1$ . You are to make these assignments in subtasks '''(1)''' and '''(2)'''.  
*In der Teilaufgabe '''(3)''' sollen Sie zudem die fehlenden Potenzen  $\alpha^5, \ \alpha^6, \ \alpha^7$  und  $\alpha^8$  in der Tabelle  $\rm (B)$  ergänzen.
+
*In the subtask '''(3)''' you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$  .
*Die Teilaufgabe '''(4)''' bezieht sich auf das ebenfalls irreduzible Polynom  $p_3(x) = x^4 + x^3 + x^2 + x +1$. Entsprechend den oben genannten Kriterien sollen Sie entscheiden, ob dieses Polynom primitiv ist.
+
*The subtask '''(4)''' refers to the also irreducible polynomial  $p_3(x) = x^4 + x^3 + x^2 + x +1$. According to the above criteria, you are to decide whether this polynomial is primitive.
  
  
Line 20: Line 20:
  
  
 +
Hints:
 +
*The exercise belongs to the chapter  [[Channel_Coding/Extension_Field|"extension field"]].
 +
*The literature citation  [LN97]  refers to the book "Lidl, R.; Niederreiter, H.: ''Finite Fields''. Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."
  
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Erweiterungsk%C3%B6rper|Erweiterungskörper]].
 
*Das Literaturzitat   [LN97]  verweist auf das Buch  "Lidl, R.; Niederreiter, H.: ''Finite Fields''. Encyclopedia of Mathematics and its Application. 2. Auflage. Cambridge: University Press, 1997".
 
  
  
 
+
===Questions===
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Polynom liegt der Tabelle &nbsp;$\rm (A)$&nbsp; zugrunde?
+
{Which polynomial underlies the table &nbsp;$\rm (A)$&nbsp;?
 
|type="()"}
 
|type="()"}
 
+ $p_1(x) = x^4 + x + 1$,
 
+ $p_1(x) = x^4 + x + 1$,
 
- $p_2(x) = x^4 + x^3 + 1$.
 
- $p_2(x) = x^4 + x^3 + 1$.
  
{Welches Polynom liegt der Tabelle &nbsp;$\rm (B)$&nbsp; zugrunde?
+
{Which polynomial underlies the table &nbsp;$\rm (B)$&nbsp;?
 
|type="()"}
 
|type="()"}
 
- $p_1(x) = x^4 + x + 1$,
 
- $p_1(x) = x^4 + x + 1$,
 
+ $p_2(x) = x^4 + x^3 + 1$.
 
+ $p_2(x) = x^4 + x^3 + 1$.
  
{Ergänzen Sie die in der Tabelle &nbsp;$\rm (B)$&nbsp; fehlenden Einträge. Welche der folgenden Angaben sind richtig?
+
{Complete the entries missing in the table &nbsp;$\rm (B)$&nbsp;. Which of the following are correct?
 
|type="[]"}
 
|type="[]"}
+ $\alpha^5 = \alpha^3 + \alpha + 1$ &nbsp; &rArr; &nbsp; Koeffizientenvektor "$1011$",
+
+ $\alpha^5 = \alpha^3 + \alpha + 1$ &nbsp; &rArr; &nbsp; Coefficient vector "$1011$",
- $\alpha^6 = \alpha^2 + 1$ &nbsp; &rArr; &nbsp; Koeffizientenvektor "$0111$",
+
- $\alpha^6 = \alpha^2 + 1$ &nbsp; &rArr; &nbsp; Coefficient vector "$0111$",
- $\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$ &nbsp; &rArr; &nbsp; Koeffizientenvektor "$1111$",
+
- $\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$ &nbsp; &rArr; &nbsp; Coefficient vector "$1111$"
+ $\alpha^8 = \alpha^3 + \alpha^2 + \alpha$ &nbsp; &rArr; &nbsp; Koeffizientenvektor "$1110$".
+
+ $\alpha^8 = \alpha^3 + \alpha^2 + \alpha$ &nbsp; &rArr; &nbsp; Coefficient vector "$1110$".
  
{Ist&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x + 1$&nbsp; ein primitives Polynom? Klären Sie diese Frage anhand der Potenzen&nbsp; $\alpha^i$&nbsp; $(i$ soweit erforderlich$)$.
+
{Is&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x + 1$&nbsp; a primitive polynomial? Clarify this question using powers&nbsp; $\alpha^i$&nbsp; $(i$ where necessary$)$.
 
|type="()"}
 
|type="()"}
- Ja.
+
- Yes.
+ Nein.
+
+ No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der oberen Potenztabelle &nbsp;$\rm (A)$&nbsp; auf der Angabenseite erkennt man unter anderem die Eigenschaft
+
'''(1)'''&nbsp; From the upper power table &nbsp;$\rm (A)$&nbsp; on the data page one recognizes among other things the property
 
:$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 
:$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 
p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$
 
p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$
  
Richtig ist somit der <u>Lösungsvorschlag 1</u>.
+
Thus, the <u>proposed solution 1</u> is correct.
  
  
  
'''(2)'''&nbsp; Nach gleicher Vorgehensweise kann gezeigt werden, dass die Potenztabelle &nbsp;$\rm (B)$&nbsp; auf dem Polynom $p_2(x) = x^4 + x^3 + 1$ basiert &nbsp; &#8658; &nbsp; <u>Lösungsvorschlag 2</u>.
+
'''(2)'''&nbsp; Following the same procedure, it can be shown that the power table &nbsp;$\rm (B)$&nbsp; is based on the polynomial $p_2(x) = x^4 + x^3 + 1$ &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.
  
  
  
'''(3)'''&nbsp; Ausgehend von Polynom $p_2(x) = x^4 + x^3 + 1$ erhält man aus der Bestimmungsgleichung $p(\alpha) = 0$ das Ergebnis $\alpha^4 = \alpha^3 + 1$. Damit ergibt sich weiter:
+
'''(3)'''&nbsp; Starting from polynomial $p_2(x) = x^4 + x^3 + 1$ one obtains from the determining equation $p(\alpha) = 0$ the result $\alpha^4 = \alpha^3 + 1$. This further yields:
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 1011},$$
+
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 1011},$$
 
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 1111},$$
 
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 1111},$$
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha =  \alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 0111},$$
+
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha =  \alpha^2  + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 0111},$$
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2  + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 1110}.$$
+
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2  + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 1110}.$$
  
*Richtig sind somit nur die <u>Lösungsvorschläge 1 und 4</u>. Die beiden anderen Angaben sind vertauscht.  
+
*Thus, only the <u>proposed solutions 1 and 4</u> are correct. The other two statements are interchanged.  
*Nachfolgend finden Sie die vollständigen Potenztabellen für $p_1(x) = x^4 + x + 1$ (links, rot hinterlegt) und für $p_2(x) = x^4 + x^3 + 1$ (rechts, blau hinterlegt).
+
*The following are the complete power tables for $p_1(x) = x^4 + x + 1$ (left, red background) and for $p_2(x) = x^4 + x^3 + 1$ (right, blue background).
  
  
[[File:P_ID2512__KC_A_2_5d_neu.png|center|frame|Vollständige Potenztabellen über $\rm GF(2^4)$ für zwei unterschiedliche Polynome]]
+
[[File:P_ID2512__KC_A_2_5d_neu.png|center|frame|Complete power tables over $\rm GF(2^4)$ for two different polynomials]]
  
  
'''(4)'''&nbsp; Die beiden Polynome&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; und&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; sind primitiv.  
+
'''(4)'''&nbsp; The two polynomials&nbsp; $p_1(x) = x^4 + x + 1$&nbsp; and&nbsp; $p_2(x) = x^4 + x^3 + 1$&nbsp; are primitive.  
*Dies erkennt man daran, dass $\alpha^i$ für $0 < i < 14$ jeweils ungleich $1$ ist.  
+
*This can be seen from the fact that $\alpha^i$ is not equal to $1$ for $0 < i < 14$ in each case.  
*Dagegen gilt $\alpha^{15} = \alpha^0 = 1$. In beiden Fällen kann das Galoisfeld wie folgt ausgedrückt werden:
+
*In contrast, $\alpha^{15} = \alpha^0 = 1$ holds. In both cases, the Galois field can be expressed as follows:
 
:$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.1cm}
 
:$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0}  = 1,\hspace{0.05cm}\hspace{0.1cm}
 
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm}  ... \hspace{0.1cm}  , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$
 
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm}  ... \hspace{0.1cm}  , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$
  
Für das Polynom&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x +1$&nbsp; erhält man :
+
For the polynomial&nbsp; $p_3(x) = x^4 + x^3 + x^2 + x +1$&nbsp; we get:
 
:$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha  +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 1111}\hspace{0.05cm},$$
 
:$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha  +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 1111}\hspace{0.05cm},$$
 
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha  = (\alpha^3 + \alpha^2 + \alpha  +1) + \alpha^3 + \alpha^2 + \alpha  = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
 
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha  = (\alpha^3 + \alpha^2 + \alpha  +1) + \alpha^3 + \alpha^2 + \alpha  = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
  
*Hier ist also bereits $\alpha^5 = \alpha^0 = 1 \ \Rightarrow \ p_3(x)$ ist kein primitives Polynom &nbsp; &#8658; &nbsp; <u>Lösungsvorschlag 2</u>.  
+
*So here already $\alpha^5 = \alpha^0 = 1 \Rightarrow \ p_3(x)$ is not a primitive polynomial &nbsp; &#8658; &nbsp; <u>Proposed solution 2</u>.  
*Für die weiteren Potenzen gilt für dieses Polynom:
+
*For the other powers, this polynomial holds:
 
:$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm}   
 
:$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm}   
 
\alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm}
 
\alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm}

Revision as of 21:49, 31 August 2022

Powers of two different extension fields over $\rm GF(2^4)$ - a not quite complete list

Irreducible and primitive polynomials have great importance in the description of error correction methods. For example, in [LN97] one finds the following irreducible polynomials of degree  $m = 4$:

  • $p_1(x) = x^4 + x +1$,
  • $p_2(x) = x^4 + x^3 + 1$,
  • $p_3(x) = x^4 + x^3 + x^2 + x + 1$.


The first two polynomials are also primitive. This can be seen from the power tables given on the right – the lower table  $\rm (B)$  however not quite complete.

  • From both tables we see that all powers  $\alpha^i$  for  $1 ≤ i ≤ 14$  are unequal  $1$  in the polynomial representation. Only for  $i = 15$  does it follow that
$$\alpha^{15} = \alpha^{0} = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}{\rm Koeffizientenvektor\hspace{0.15cm} 0001}\hspace{0.05cm} .$$
  • It is not specified whether the tables  $\rm (A)$  and  $\rm (B)$  result from the polynomial  $p_1(x) = x^4 + x + 1$  or from  $p_2(x) =x^4 + x^3 + 1$ . You are to make these assignments in subtasks (1) and (2).
  • In the subtask (3) you are also to complete the missing powers  $\alpha^5, \ \alpha^6, \ \alpha^7$  and  $\alpha^8$  in the table  $\rm (B)$  .
  • The subtask (4) refers to the also irreducible polynomial  $p_3(x) = x^4 + x^3 + x^2 + x +1$. According to the above criteria, you are to decide whether this polynomial is primitive.




Hints:

  • The exercise belongs to the chapter  "extension field".
  • The literature citation  [LN97]  refers to the book "Lidl, R.; Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Application. 2nd ed. Cambridge: University Press, 1997."


Questions

1

Which polynomial underlies the table  $\rm (A)$ ?

$p_1(x) = x^4 + x + 1$,
$p_2(x) = x^4 + x^3 + 1$.

2

Which polynomial underlies the table  $\rm (B)$ ?

$p_1(x) = x^4 + x + 1$,
$p_2(x) = x^4 + x^3 + 1$.

3

Complete the entries missing in the table  $\rm (B)$ . Which of the following are correct?

$\alpha^5 = \alpha^3 + \alpha + 1$   ⇒   Coefficient vector "$1011$",
$\alpha^6 = \alpha^2 + 1$   ⇒   Coefficient vector "$0111$",
$\alpha^7 = \alpha^3 + \alpha^2 + \alpha + 1$   ⇒   Coefficient vector "$1111$"
$\alpha^8 = \alpha^3 + \alpha^2 + \alpha$   ⇒   Coefficient vector "$1110$".

4

Is  $p_3(x) = x^4 + x^3 + x^2 + x + 1$  a primitive polynomial? Clarify this question using powers  $\alpha^i$  $(i$ where necessary$)$.

Yes.
No.


Solution

(1)  From the upper power table  $\rm (A)$  on the data page one recognizes among other things the property

$$\alpha^{4} = \alpha + 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}\alpha^{4} + \alpha + 1 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} p(x) = x^4 + x +1 =p_1(x)\hspace{0.05cm}.$$

Thus, the proposed solution 1 is correct.


(2)  Following the same procedure, it can be shown that the power table  $\rm (B)$  is based on the polynomial $p_2(x) = x^4 + x^3 + 1$   ⇒   Proposed solution 2.


(3)  Starting from polynomial $p_2(x) = x^4 + x^3 + 1$ one obtains from the determining equation $p(\alpha) = 0$ the result $\alpha^4 = \alpha^3 + 1$. This further yields:

$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^3 + 1) = \alpha^4 + \alpha = \alpha^3 + \alpha +1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 1011},$$
$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^3 +\alpha + 1) = \alpha^4 + \alpha^2 + \alpha= \alpha^3 +\alpha^2 + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vektor\hspace{0.15cm} 1111},$$
$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha^4 +\alpha^3 +\alpha^2 +\alpha = \alpha^2 + \alpha + 1\hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 0111},$$
$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot (\alpha^2 + \alpha + 1) = \alpha^3 +\alpha^2 +\alpha \hspace{0.05cm} \Rightarrow\hspace{0.05cm}{\rm Vector\hspace{0.15cm} 1110}.$$
  • Thus, only the proposed solutions 1 and 4 are correct. The other two statements are interchanged.
  • The following are the complete power tables for $p_1(x) = x^4 + x + 1$ (left, red background) and for $p_2(x) = x^4 + x^3 + 1$ (right, blue background).


Complete power tables over $\rm GF(2^4)$ for two different polynomials


(4)  The two polynomials  $p_1(x) = x^4 + x + 1$  and  $p_2(x) = x^4 + x^3 + 1$  are primitive.

  • This can be seen from the fact that $\alpha^i$ is not equal to $1$ for $0 < i < 14$ in each case.
  • In contrast, $\alpha^{15} = \alpha^0 = 1$ holds. In both cases, the Galois field can be expressed as follows:
$${\rm GF}(2^4) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} \alpha^{0} = 1,\hspace{0.05cm}\hspace{0.1cm} \alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2},\hspace{0.1cm} ... \hspace{0.1cm} , \hspace{0.1cm}\alpha^{14}\hspace{0.1cm}\}\hspace{0.05cm}. $$

For the polynomial  $p_3(x) = x^4 + x^3 + x^2 + x +1$  we get:

$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^3 + \alpha^2 + \alpha +1\hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 1111}\hspace{0.05cm},$$
$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha^4 + \alpha^3 + \alpha^2 + \alpha = (\alpha^3 + \alpha^2 + \alpha +1) + \alpha^3 + \alpha^2 + \alpha = 1 \hspace{0.25cm} \Rightarrow\hspace{0.25cm}{\rm Vektor\hspace{0.15cm} 0001}\hspace{0.05cm}.$$
  • So here already $\alpha^5 = \alpha^0 = 1 \Rightarrow \ p_3(x)$ is not a primitive polynomial   ⇒   Proposed solution 2.
  • For the other powers, this polynomial holds:
$$\alpha^6 = \alpha^{11} = \alpha\hspace{0.05cm},\hspace{0.2cm} \alpha^7 = \alpha^{12} = \alpha^2\hspace{0.05cm},\hspace{0.2cm} \alpha^8 = \alpha^{13} = \alpha^3\hspace{0.05cm},$$
$$\alpha^9 = \alpha^{14} = \alpha^4\hspace{0.05cm},\hspace{0.2cm} \alpha^{10} = \alpha^{15} = \alpha^0 = 1\hspace{0.05cm}.$$