Difference between revisions of "Aufgaben:Exercise 5.3: AWGN and BSC Model"

From LNTwww
 
(22 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Binary Symmetric Channel (BSC)}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)}}
  
[[File:P_ID1831__Dig_A_5_3.png|right|frame|AWGN–Kanal und BSC–Modell]]
+
[[File:EN_Dig_A_5_3.png|right|frame|AWGN and BSC model]]
Die Grafik zeigt oben das analoge Kanalmodell eines digitalen Übertragungssystems, wobei das additive Rauschsignal $n(t)$ mit der Rauschleistungsdichte $N_0/2$ wirksam ist. Es handelt sich um AWGN–Rauschen. Die Varianz des Rauschanteils vor dem Entscheider (nach dem Matched–Filter) ist dann
+
The upper graphic shows the analog channel model of a digital transmission system,  where the additive noise signal  $n(t)$  with the  $($two-sided$)$  noise power density  $N_0/2$  is effective.  This is AWGN noise.  The variance of the noise component before the decision  $($after the matched filter$)$  is then
 
:$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
 
:$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
  
Weiter soll gelten:
+
Further, let hold:
* Es treten keine Impulsinterferenzen auf. Wurde das Symbol $q_{\nu} = \mathbf{H}$ gesendet, so ist der Nutzanteil des Detektionssignal gleich $+s_0$, bei $q_{\nu} = \mathbf{L}$ dagegen $–s_0$.
+
* No intersymbol interference occurs.  If the symbol  $q_{\nu} = \mathbf{H}$  was sent,  the useful component of the detection signal is equal to  $+s_0$,  while for  $q_{\nu} = \mathbf{L}$,  it is equal to  $-s_0$.
* Der Schwellenwertentscheider berücksichtigt eine Schwellendrift, das heißt, die Schwelle <i>E</i> kann durchaus vom Optimalwert $E = 0$ abweichen. Die <i>Entscheidungsregel</i> lautet:
+
 
 +
* The threshold decision takes into account a threshold drift,&nbsp; that is,&nbsp; the threshold&nbsp; $E$&nbsp; may well deviate from the optimal value&nbsp; $E = 0$.&nbsp; The&nbsp; "decision rule"&nbsp; is:
 
:$$\upsilon_\nu =
 
:$$\upsilon_\nu =
 
  \left\{ \begin{array}{c} \mathbf{H} \\
 
  \left\{ \begin{array}{c} \mathbf{H} \\
 
  \mathbf{L} \end{array} \right.\quad
 
  \mathbf{L} \end{array} \right.\quad
\begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}d (\nu \cdot T) > E  \hspace{0.05cm},
+
\begin{array}{*{1}c} {\rm if}\hspace{0.15cm}d (\nu \cdot T) > E  \hspace{0.05cm},
\\  {\rm falls} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
+
\\  {\rm if} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
* Mit dem Schwellenwert $E = 0$ ergibt sich die mittlere Fehlerwahrscheinlichkeit zu
+
* With the threshold value&nbsp; $E = 0$,&nbsp; the mean error probability is given by
 
:$$p_{\rm M} = {\rm Q} \left ( {s_0}/{\sigma} \right ) = 0.01\hspace{0.05cm}.$$
 
:$$p_{\rm M} = {\rm Q} \left ( {s_0}/{\sigma} \right ) = 0.01\hspace{0.05cm}.$$
  
Die untere Grafik zeigt ein digitales Kanalmodell, das durch die vier Übergangswahrscheinlichkeiten $p_1, p_2, p_3$ und $p_4$ charakterisiert ist. Dieses soll an das analoge Kanalmodell angepasst werden.
+
&rArr; &nbsp; The bottom graph shows a digital channel model characterized by the four transition probabilities&nbsp; $p_1, &nbsp; p_2, &nbsp; p_3$ &nbsp; and &nbsp; $p_4$.&nbsp; This is to be fitted to the analog channel model.
 +
 
 +
 
 +
 
 +
 
  
''Hinweise:''
+
<u>Notes:</u>
* Die Aufgabe beschreibt das Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)| Binary Symmetric Channel (BSC)]].  
+
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Binary_Symmetric_Channel_(BSC)| "Binary Symmetric Channel"]].
* Zahlenwerte der so genannten Q&ndash;Funktion können Sie mit dem folgenden Interaktionsmodul ermitteln: [[Komplementäre Gaußsche Fehlerfunktionen]]
+
 +
* Numerical values of the Q&ndash;function can be determined with the interactive applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]].&nbsp;
 +
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Quotient $s_0/\sigma$ liegt dieser Aufgabe zugrunde?
+
{Which quotient&nbsp; $s_0/\sigma$&nbsp; is the basis of this exercise?
 
|type="{}"}
 
|type="{}"}
 
$s_0/\sigma\ = \ ${ 2.32 3% }
 
$s_0/\sigma\ = \ ${ 2.32 3% }
  
{Für die Schwelle gelte $E = 0$. Ist das vorliegende digitale Übertragungssystem durch das BSC&ndash;Modell beschreibbar, unter der Voraussetzung,
+
{For the threshold, let&nbsp; $E = 0$.&nbsp; Is the digital transmission system at hand describable by the BSC model,&nbsp; assuming that
 
|type="[]"}
 
|type="[]"}
+ dass die Quellensymbole $\mathbf{L}$ und $\mathbf{H}$ gleichwahrscheinlich sind,
+
+ the source symbols&nbsp; $\mathbf{L}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are equally probable,
+ dass das Quellensymbol $\mathbf{L}$ deutlich häufiger auftritt als $\mathbf{H}$?.
+
+ the source symbol&nbsp; $\mathbf{L}$&nbsp; occurs significantly more frequently than&nbsp; $\mathbf{H}$?
  
{Berechnen Sie die Übergangswahrscheinlichkeiten für $E = +s_0/4$.
+
{Calculate the transition probabilities for&nbsp; $E = +s_0/4$.
 
|type="{}"}
 
|type="{}"}
 
$p_1 \ = \ $ { 0.959 3% }
 
$p_1 \ = \ $ { 0.959 3% }
Line 43: Line 50:
 
$p_4 \ = \ $ { 0.998 3% }
 
$p_4 \ = \ $ { 0.998 3% }
  
{Nun gelte $E = +s_0/4$. Ist das vorliegende digitale Übertragungssystem durch das BSC&ndash;Modell beschreibbar, unter der Voraussetzung,
+
{Now let&nbsp; $E = +s_0/4$.&nbsp; Is the present digital transmission system describable by the BSC model under the condition that
 
|type="[]"}
 
|type="[]"}
- dass die Quellensymbole $\mathbf{L}$ und $\mathbf{H}$ gleichwahrscheinlich sind,
+
- the source symbols&nbsp; $\mathbf{L}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are equally probable,
- dass das Quellensymbol $\mathbf{L}$ deutlich häufiger auftritt als $\mathbf{H}$?.
+
- the source symbol&nbsp; $\mathbf{L}$&nbsp; occurs significantly more frequently than&nbsp; $\mathbf{H}$?
  
{Es gelte $p_{\rm L} = {\rm Pr}(q_{\nu} = \mathbf{L})$ und $p_{\rm H} = {\rm Pr}(q_{\nu} = \mathbf{H})$. Welche der folgenden Aussagen sind dann für die mittlere Fehlerwahrscheinlichkeit zutreffend?
+
{Let&nbsp; $p_{\rm L} = {\rm Pr}(q_{\nu} = \mathbf{L})$&nbsp; and&nbsp; $p_{\rm H} = {\rm Pr}(q_{\nu} = \mathbf{H})$.&nbsp; Which of the following statements are then true for the mean error probability&nbsp; $p_{\rm M}$?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ $p_{\rm M}$ ist beim BSC&ndash;Modell ($E = 0$) unabhängig von $p_{\rm L}$ und $p_{\rm H}$.
+
+ $p_{\rm M}$&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is independent of&nbsp; $p_{\rm L}$&nbsp; and &nbsp;$p_{\rm H}$.
- $p_{\rm M}$ ist beim BSC&ndash;Modell ($E = 0$) für $p_{\rm L} = p_{\rm H}$ am kleinsten.
+
- $p_{\rm M}$&nbsp; in the BSC model &nbsp;$($valid for &nbsp;$E = 0)$&nbsp; is smallest for&nbsp; $p_{\rm L} = p_{\rm H}$.&nbsp;
+ Für $p_{\rm L} = 0.9$, $p_{\rm H} = 0.1$ und $E = +s_0/4$ ist $p_{\rm M}$ kleiner als $1\%$.
+
+ For&nbsp; $p_{\rm L} = 0.9$,&nbsp; $p_{\rm H} = 0.1$&nbsp; and&nbsp; $E = +s_0/4$&nbsp; &nbsp; &rArr; &nbsp; $p_{\rm M} < 1\%$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The mean error probability is&nbsp; $p_{\rm M} = {\rm Q}(s_0/\sigma) = 0.01$.
'''(2)'''&nbsp;  
+
*From this it follows for the quotient of the detection useful sample value and the detection noise rms value:
'''(3)'''&nbsp;  
+
:$${s_0}/{\sigma}= {\rm Q}^{-1} \left ( 0.01 \right ) \hspace{0.15cm}\underline {\approx 2.32}\hspace{0.05cm}.$$
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; With&nbsp; $E = 0$,&nbsp; the probabilities of the digital channel model are given by:
 +
:$$p_2 = p_3 = p = 0.01 \hspace{0.05cm}, \hspace{0.2cm}p_1 = p_4 = 1-p = 0.99\hspace{0.05cm}.$$
 +
 
 +
*A comparison with the theory part shows that this channel model corresponds to the BSC model,&nbsp; independent of the statistics of the source symbols.
 +
*Thus,&nbsp; <u>both solutions</u>&nbsp; are correct.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The transition probability&nbsp; $p_2$&nbsp; now describes the case where the decision threshold&nbsp; $E = 0.25 \cdot s_0$&nbsp; was mistakenly undershot.
 +
*Then&nbsp; $v_{\nu} = \mathbf{L}$,&nbsp; although $q_{\nu} = \mathbf{H}$&nbsp; was sent.&nbsp; Thus,&nbsp; the distance from the threshold is only&nbsp; $0.75 \cdot s_0$&nbsp; and it holds:
 +
:$$p_{\rm 2}  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Q} \left ( \frac{0.75 \cdot s_0}{\sigma} \right ) = {\rm Q} \left ( 0.75 \cdot 2.32 \right )
 +
= {\rm Q} \left ( 1.74 \right )\hspace{0.15cm}\underline {\approx 0.041}\hspace{0.05cm}, \hspace{0.5cm}
 +
p_{\rm 1}  \hspace{-0.1cm} \ = \  \hspace{-0.1cm}1 - p_{\rm 2} \hspace{0.15cm}\underline {=
 +
0.959}\hspace{0.05cm}.$$
 +
 
 +
*Similarly, the transition probabilities&nbsp; $p_3$&nbsp; and&nbsp; $p_4$&nbsp; can be calculated,&nbsp; now assuming the threshold distance&nbsp; $1.25 \cdot s_0$:
 +
:$$p_{\rm 3}  = {\rm Q} \left ( 1.25 \cdot 2.32 \right )
 +
= {\rm Q} \left ( 2.90 \right )\hspace{0.15cm}\underline {\approx  0.002}\hspace{0.05cm}, \hspace{0.2cm}
 +
p_{\rm 4}  = 1 - p_{\rm 3}\hspace{0.15cm}\underline { =
 +
0.998}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>Neither</u>&nbsp; of the two solutions applies:
 +
*With the decision threshold&nbsp; $E &ne; 0$,&nbsp; the BSC model is not applicable regardless of the symbol statistic,
 +
 
 +
*since the symmetry property of the channel&nbsp; $($the&nbsp; "S"&nbsp; flag in&nbsp; "BSC"$)$&nbsp; does not hold.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; <u>Statements 1 and 3</u>&nbsp; are true,&nbsp; but not statement 2:
 +
*In the BSC model,&nbsp; $p_{\rm M} = 1\%$&nbsp; is independent of the symbol probabilities&nbsp; $p_{\rm L}$&nbsp; and&nbsp; $p_{\rm H}$.
 +
 +
*In contrast,&nbsp; for $p_{\rm L} = 0.9$,&nbsp; $p_{\rm H} = 0.1$&nbsp; and&nbsp; $E = +s_0/4$:
 +
:$$p_{\rm M}  = 0.9 \cdot p_{\rm 3} + 0.1 \cdot p_{\rm 2}= 0.9 \cdot 0.2\% + 0.1 \cdot 4.1\%
 +
\approx 0.59\% \hspace{0.05cm}.$$
 +
 
 +
*The minimum results for&nbsp; $p_{\rm L} = 0.93$&nbsp; and&nbsp; $p_{\rm H} = 0.07$&nbsp; to
 +
:$$p_{\rm M} \approx 0.45\%.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.2 Binary Symmetric Channel (BSC)^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.2 Binary Symmetric Channel^]]

Latest revision as of 14:30, 5 September 2022

AWGN and BSC model

The upper graphic shows the analog channel model of a digital transmission system,  where the additive noise signal  $n(t)$  with the  $($two-sided$)$  noise power density  $N_0/2$  is effective.  This is AWGN noise.  The variance of the noise component before the decision  $($after the matched filter$)$  is then

$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$

Further, let hold:

  • No intersymbol interference occurs.  If the symbol  $q_{\nu} = \mathbf{H}$  was sent,  the useful component of the detection signal is equal to  $+s_0$,  while for  $q_{\nu} = \mathbf{L}$,  it is equal to  $-s_0$.
  • The threshold decision takes into account a threshold drift,  that is,  the threshold  $E$  may well deviate from the optimal value  $E = 0$.  The  "decision rule"  is:
$$\upsilon_\nu = \left\{ \begin{array}{c} \mathbf{H} \\ \mathbf{L} \end{array} \right.\quad \begin{array}{*{1}c} {\rm if}\hspace{0.15cm}d (\nu \cdot T) > E \hspace{0.05cm}, \\ {\rm if} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
  • With the threshold value  $E = 0$,  the mean error probability is given by
$$p_{\rm M} = {\rm Q} \left ( {s_0}/{\sigma} \right ) = 0.01\hspace{0.05cm}.$$

⇒   The bottom graph shows a digital channel model characterized by the four transition probabilities  $p_1,   p_2,   p_3$   and   $p_4$.  This is to be fitted to the analog channel model.



Notes:



Questions

1

Which quotient  $s_0/\sigma$  is the basis of this exercise?

$s_0/\sigma\ = \ $

2

For the threshold, let  $E = 0$.  Is the digital transmission system at hand describable by the BSC model,  assuming that

the source symbols  $\mathbf{L}$  and  $\mathbf{H}$  are equally probable,
the source symbol  $\mathbf{L}$  occurs significantly more frequently than  $\mathbf{H}$?

3

Calculate the transition probabilities for  $E = +s_0/4$.

$p_1 \ = \ $

$p_2 \ = \ $

$p_3 \ = \ $

$p_4 \ = \ $

4

Now let  $E = +s_0/4$.  Is the present digital transmission system describable by the BSC model under the condition that

the source symbols  $\mathbf{L}$  and  $\mathbf{H}$  are equally probable,
the source symbol  $\mathbf{L}$  occurs significantly more frequently than  $\mathbf{H}$?

5

Let  $p_{\rm L} = {\rm Pr}(q_{\nu} = \mathbf{L})$  and  $p_{\rm H} = {\rm Pr}(q_{\nu} = \mathbf{H})$.  Which of the following statements are then true for the mean error probability  $p_{\rm M}$? 

$p_{\rm M}$  in the BSC model  $($valid for  $E = 0)$  is independent of  $p_{\rm L}$  and  $p_{\rm H}$.
$p_{\rm M}$  in the BSC model  $($valid for  $E = 0)$  is smallest for  $p_{\rm L} = p_{\rm H}$. 
For  $p_{\rm L} = 0.9$,  $p_{\rm H} = 0.1$  and  $E = +s_0/4$    ⇒   $p_{\rm M} < 1\%$.


Solution

(1)  The mean error probability is  $p_{\rm M} = {\rm Q}(s_0/\sigma) = 0.01$.

  • From this it follows for the quotient of the detection useful sample value and the detection noise rms value:
$${s_0}/{\sigma}= {\rm Q}^{-1} \left ( 0.01 \right ) \hspace{0.15cm}\underline {\approx 2.32}\hspace{0.05cm}.$$


(2)  With  $E = 0$,  the probabilities of the digital channel model are given by:

$$p_2 = p_3 = p = 0.01 \hspace{0.05cm}, \hspace{0.2cm}p_1 = p_4 = 1-p = 0.99\hspace{0.05cm}.$$
  • A comparison with the theory part shows that this channel model corresponds to the BSC model,  independent of the statistics of the source symbols.
  • Thus,  both solutions  are correct.


(3)  The transition probability  $p_2$  now describes the case where the decision threshold  $E = 0.25 \cdot s_0$  was mistakenly undershot.

  • Then  $v_{\nu} = \mathbf{L}$,  although $q_{\nu} = \mathbf{H}$  was sent.  Thus,  the distance from the threshold is only  $0.75 \cdot s_0$  and it holds:
$$p_{\rm 2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}{\rm Q} \left ( \frac{0.75 \cdot s_0}{\sigma} \right ) = {\rm Q} \left ( 0.75 \cdot 2.32 \right ) = {\rm Q} \left ( 1.74 \right )\hspace{0.15cm}\underline {\approx 0.041}\hspace{0.05cm}, \hspace{0.5cm} p_{\rm 1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}1 - p_{\rm 2} \hspace{0.15cm}\underline {= 0.959}\hspace{0.05cm}.$$
  • Similarly, the transition probabilities  $p_3$  and  $p_4$  can be calculated,  now assuming the threshold distance  $1.25 \cdot s_0$:
$$p_{\rm 3} = {\rm Q} \left ( 1.25 \cdot 2.32 \right ) = {\rm Q} \left ( 2.90 \right )\hspace{0.15cm}\underline {\approx 0.002}\hspace{0.05cm}, \hspace{0.2cm} p_{\rm 4} = 1 - p_{\rm 3}\hspace{0.15cm}\underline { = 0.998}\hspace{0.05cm}.$$


(4)  Neither  of the two solutions applies:

  • With the decision threshold  $E ≠ 0$,  the BSC model is not applicable regardless of the symbol statistic,
  • since the symmetry property of the channel  $($the  "S"  flag in  "BSC"$)$  does not hold.


(5)  Statements 1 and 3  are true,  but not statement 2:

  • In the BSC model,  $p_{\rm M} = 1\%$  is independent of the symbol probabilities  $p_{\rm L}$  and  $p_{\rm H}$.
  • In contrast,  for $p_{\rm L} = 0.9$,  $p_{\rm H} = 0.1$  and  $E = +s_0/4$:
$$p_{\rm M} = 0.9 \cdot p_{\rm 3} + 0.1 \cdot p_{\rm 2}= 0.9 \cdot 0.2\% + 0.1 \cdot 4.1\% \approx 0.59\% \hspace{0.05cm}.$$
  • The minimum results for  $p_{\rm L} = 0.93$  and  $p_{\rm H} = 0.07$  to
$$p_{\rm M} \approx 0.45\%.$$