Difference between revisions of "Aufgaben:Exercise 2.11Z: Erasure Channel for Symbols"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel}} |
− | [[File:P_ID2543__KC_Z_2_11.png|right|frame| | + | [[File:P_ID2543__KC_Z_2_11.png|right|frame|Erase channel for symbols: $m$-BEC]] |
− | + | The channel model [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|"Binary Erasure Channel"]] (BEC) describes a bit-level erasure channel: | |
− | * | + | *A binary symbol $0$ or $1$ is correctly transmitted with probability $1 - \lambda$ and marked as an erasure $\lambda$ with probability $\rm E$. |
− | * | + | *In contrast to [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC| "Binary Symmetric Channel"]] (BSC), corruptions $(0 → 1, \ 1 → 0)$ cannot occur here. |
− | + | A Reed–Solomon code is based on a Galois field ${\rm GF}(2^m)$ with integer $m$. Thus, each code symbol $c$ can be represented by $m$ bits . If one wants to apply the BEC–model here, one has to modify it to the $m\text{-BEC}$ model as shown in the diagram below for $m = 2$ : | |
− | * | + | *All code symbols – in binary representation $00, \ 01, \ 10, \ 11$ – are transmitted correctly with probability $1 - \lambda_2$ . |
− | * | + | *Thus, the probability of an erased symbol is $\lambda_2$. |
− | * | + | *Note that already a single erased bit leads to the erased received symbol $y = \rm E$ . |
Line 19: | Line 19: | ||
− | + | Hints: | |
− | * | + | * This exercise belongs to the chapter [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel| "Reed–Solomon Decoding at the Erasure Channel"]]. |
− | * | + | * For a code based on ${\rm GF}(2^m)$ the outlined $2$ BEC model is to be extended to $m$ BEC. |
− | * | + | *The erasure probability of this model is then denoted by $\lambda_m$ . |
− | * | + | *For the first subtasks, always $\lambda = 0.2$ for the erasure probability of the basic model according to the upper graph. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {$\lambda = 0.2$ is valid. With what probabilities do the possible received values occur in the BEC basic model ? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(y = 0) \ = \ ${ 40 3% } $\ \%$ | ${\rm Pr}(y = 0) \ = \ ${ 40 3% } $\ \%$ | ||
Line 36: | Line 36: | ||
${\rm Pr}(y = {\rm 1}) \ = \ ${ 40 3% } $\ \%$ | ${\rm Pr}(y = {\rm 1}) \ = \ ${ 40 3% } $\ \%$ | ||
− | { | + | {What is the erasure probability $\lambda_2$ at symbol level $(2$ BEC model$)$ when the RS code is based on $\rm GF(2^2)$ $(\lambda = 0.2)$? |
|type="{}"} | |type="{}"} | ||
$\lambda_2 \ = \ ${ 36 3% } $\ \%$ | $\lambda_2 \ = \ ${ 36 3% } $\ \%$ | ||
− | { | + | {What is the erasure probability $\lambda_m$ when the $m$ BEC model is fitted to the $\rm RSC \, (255, \, 223, \, 33)_{256}$ $(\lambda = 0.2)$? |
|type="{}"} | |type="{}"} | ||
$\lambda_m \ = \ ${ 83.2 3% } $\ \%$ | $\lambda_m \ = \ ${ 83.2 3% } $\ \%$ | ||
− | { | + | {What is the maximum allowed erasure probability $\lambda$ in BEC basic model for $\lambda_m ≤ 0.2$ to hold? |
|type="{}"} | |type="{}"} | ||
${\rm Max} \ \big[\lambda\big ] \ = \ ${ 2.75 3% } $\ \%$ | ${\rm Max} \ \big[\lambda\big ] \ = \ ${ 2.75 3% } $\ \%$ | ||
− | { | + | {What is the probability of receiving the "zero symbol" in this case? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(y_{\rm bin} = 00000000) \ = \ ${ 0.3125 3% } $\ \%$ | ${\rm Pr}(y_{\rm bin} = 00000000) \ = \ ${ 0.3125 3% } $\ \%$ | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Due to the symmetry of the given BEC model (bit-level erasure channel), the <i>erasure</i> probability is: |
:$$\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 20\%}.$$ | :$$\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 20\%}.$$ | ||
− | + | Since code symbols $0$ and $1$ are equally likely, we obtain ${\rm Pr}(y = 0) \ \underline{= 40\%}$ and ${\rm Pr}(y = 1) \ \underline{= 40\%}$ for their probabilities. | |
− | '''(2)''' | + | '''(2)''' Without limiting generality, we assume the code symbol $c_{\rm binary} = $ "$00$" to solve this exercise. |
− | * | + | *According to the 2 BEC model, the receive symbol $y_{\rm binary}$ can then be either "$00$" or canceled $(\rm E)$ and it holds: |
:$${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2\hspace{0.3cm} | :$${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 36\%}\hspace{0.05cm}. $$ | \Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 36\%}\hspace{0.05cm}. $$ | ||
− | * | + | *This assumes that an <i>erasure</i> is avoided only if neither of the two bits has been erased. |
− | '''(3)''' | + | '''(3)''' The $\rm RSC \, (255, \, 223, \, 33)_{256}$ is based on the Galois field $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. The result of subtask (2) must now be adapted to this case. For the $8$ BEC holds: |
:$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | :$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
\lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 83.2\%}\hspace{0.05cm}. $$ | \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 83.2\%}\hspace{0.05cm}. $$ | ||
Line 75: | Line 75: | ||
− | '''(4)''' | + | '''(4)''' From the condition $\lambda_m ≤ 0.2$ it follows directly $1 - \lambda_m ≥ 0.8$. From this follows further: |
:$$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | :$$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} | 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} | ||
Line 82: | Line 82: | ||
− | '''(5)''' | + | '''(5)''' Here one proceeds as follows: |
*Mit $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$ sind $20\%$ der Empfangssymbole <i>Erasures</i>. | *Mit $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$ sind $20\%$ der Empfangssymbole <i>Erasures</i>. | ||
*Die $2^8 = 256$ Empfangssymbole ($00000000$ ... $11111111$) sind alle gleichwahrscheinlich. Daraus folgt: | *Die $2^8 = 256$ Empfangssymbole ($00000000$ ... $11111111$) sind alle gleichwahrscheinlich. Daraus folgt: |
Revision as of 20:43, 5 September 2022
The channel model "Binary Erasure Channel" (BEC) describes a bit-level erasure channel:
- A binary symbol $0$ or $1$ is correctly transmitted with probability $1 - \lambda$ and marked as an erasure $\lambda$ with probability $\rm E$.
- In contrast to "Binary Symmetric Channel" (BSC), corruptions $(0 → 1, \ 1 → 0)$ cannot occur here.
A Reed–Solomon code is based on a Galois field ${\rm GF}(2^m)$ with integer $m$. Thus, each code symbol $c$ can be represented by $m$ bits . If one wants to apply the BEC–model here, one has to modify it to the $m\text{-BEC}$ model as shown in the diagram below for $m = 2$ :
- All code symbols – in binary representation $00, \ 01, \ 10, \ 11$ – are transmitted correctly with probability $1 - \lambda_2$ .
- Thus, the probability of an erased symbol is $\lambda_2$.
- Note that already a single erased bit leads to the erased received symbol $y = \rm E$ .
Hints:
- This exercise belongs to the chapter "Reed–Solomon Decoding at the Erasure Channel".
- For a code based on ${\rm GF}(2^m)$ the outlined $2$ BEC model is to be extended to $m$ BEC.
- The erasure probability of this model is then denoted by $\lambda_m$ .
- For the first subtasks, always $\lambda = 0.2$ for the erasure probability of the basic model according to the upper graph.
Questions
Solution
- $$\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 20\%}.$$
Since code symbols $0$ and $1$ are equally likely, we obtain ${\rm Pr}(y = 0) \ \underline{= 40\%}$ and ${\rm Pr}(y = 1) \ \underline{= 40\%}$ for their probabilities.
(2) Without limiting generality, we assume the code symbol $c_{\rm binary} = $ "$00$" to solve this exercise.
- According to the 2 BEC model, the receive symbol $y_{\rm binary}$ can then be either "$00$" or canceled $(\rm E)$ and it holds:
- $${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 36\%}\hspace{0.05cm}. $$
- This assumes that an erasure is avoided only if neither of the two bits has been erased.
(3) The $\rm RSC \, (255, \, 223, \, 33)_{256}$ is based on the Galois field $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. The result of subtask (2) must now be adapted to this case. For the $8$ BEC holds:
- $$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 83.2\%}\hspace{0.05cm}. $$
(4) From the condition $\lambda_m ≤ 0.2$ it follows directly $1 - \lambda_m ≥ 0.8$. From this follows further:
- $$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} \underline{\le 2.75\%}\hspace{0.05cm}.$$
(5) Here one proceeds as follows:
- Mit $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$ sind $20\%$ der Empfangssymbole Erasures.
- Die $2^8 = 256$ Empfangssymbole ($00000000$ ... $11111111$) sind alle gleichwahrscheinlich. Daraus folgt:
- $${\rm Pr}(y_{\rm bin} = 00000000) = \hspace{0.1cm}\text{...} \hspace{0.1cm}= {\rm Pr}(y_{\rm bin} = 11111111)= \frac{0.8}{256} \hspace{0.15cm}\underline{= 0.3125\%}\hspace{0.05cm}.$$