Difference between revisions of "Aufgaben:Exercise 4.4Z: Pointer Diagram for SSB-AM"
(25 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Signal_Representation/Analytical_Signal_and_Its_Spectral_Function |
}} | }} | ||
− | [[File:P_ID732__Sig_Z_4_4_neu.png|right|frame| | + | [[File:P_ID732__Sig_Z_4_4_neu.png|right|frame|Given analytical spectrum $S_+(f)$]] |
− | + | ||
+ | The analytical signal $s_+(t)$ with the line spectrum | ||
:$$S_{+}(f) = {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm | :$$S_{+}(f) = {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm | ||
50})- {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - | 50})- {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - | ||
− | f_{\rm 60}) | + | f_{\rm 60})$$ |
− | + | is to be considered. | |
+ | Here $f_{50}$ and $f_{60}$ are abbreviations for the frequencies $50 \ \text{kHz}$ and $60 \ \text{kHz}$, respectively. | ||
− | + | This analytical signal could occur, for example, with the [[Modulation_Methods/Einseitenbandmodulation|Single Sideband Amplitude Modulation]] $\text{(SSB–AM)}$ of a sinusoidal message signal $($Frequenz $f_{\rm N} = 10 \ \text{kHz})$ with a cosinusoidal carrier signal $(f_{\rm T} = 50 \ \text{kHz})$ , whereby only the upper sideband is transmitted ⇒ $\text{Upper Sideband Modulation}$. | |
− | + | However, the analytical signal could also result from a $\text{Lower Sideband Modulation}$ of the same sinusoidal signal if a sinusoidal carrier with frequency $f_{\rm T} = 60 \ \text{kHz}$ is used. | |
+ | ''Hints:'' | ||
+ | *This exercise belongs to the chapter [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]]. | ||
+ | |||
+ | *You can check your solution with the interaction module [[Applets:Physical_Signal_%26_Analytic_Signal|Physical and Analytical Signal]]. | ||
− | |||
− | |||
− | |||
− | |||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Give the analytical signal $s_+(t)$ as a formula. What value results at the starting time $t = 0$? |
|type="{}"} | |type="{}"} | ||
$\text{Re}[s_+(t = 0)]\ = \ $ { 1 3% } $\text{V}$ | $\text{Re}[s_+(t = 0)]\ = \ $ { 1 3% } $\text{V}$ | ||
Line 34: | Line 36: | ||
− | { | + | {At what time $t_1$ does the first zero crossing of the physical signal $s(t)$ occur relative to the first zero crossing of the $50 \ \text{kHz-cosine signal}$ ? <br>''Note:'' The latter is at time $T_0/4 = 1/(4 \cdot f_{50}) = 5 \ µ \text{s}$. |
− | |type=" | + | |type="()"} |
− | - | + | - It is $t_1 < 5 \ {\rm µ} \text{s}$. |
− | - | + | - It is $t_1 = 5 \ {\rm µ}\text{s}$. |
− | + | + | + It is $t_1 > 5 \ {\rm µ} \text{s}$. |
− | { | + | {What is the maximum value of $|s_+(t)|$? At what time $t_2$ is this maximum value reached for the first time? |
|type="{}"} | |type="{}"} | ||
$|s_+(t)|_{\rm max}\ = \ ${ 2 3% } $\text{V}$ | $|s_+(t)|_{\rm max}\ = \ ${ 2 3% } $\text{V}$ | ||
Line 47: | Line 49: | ||
− | { | + | {At what time $t_3$ is the pointer length $|s_+(t)|$ equal to zero for the first time? |
|type="{}"} | |type="{}"} | ||
$t_3\ = \ $ { 75 3% } ${\rm µ s}$ | $t_3\ = \ $ { 75 3% } ${\rm µ s}$ | ||
Line 55: | Line 57: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | [[File:EN_Sig_Z_4_4_ML.png|right|frame|Three different analytical signals]] |
+ | '''(1)''' The analytical signal is generally: | ||
:$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | :$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | ||
j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } - {\rm | j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } - {\rm | ||
j}\cdot{\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | j}\cdot{\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm | ||
j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }.$$ | j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }.$$ | ||
− | + | At time $t = 0$ the complex exponential functions each take the value $1$ and one obtains (see left graph): | |
− | + | *$\text{Re}[s_+(t = 0)] \; \underline{= +1\ \text{V}}$, | |
− | + | *$\text{Im}[s_+(t = 0)]\; \underline{ = \,-\hspace{-0.08cm}1\ \text{V}}$. | |
− | + | <br clear=all> | |
− | + | '''(2)''' For the analytical signal it can also be written: | |
− | '''(2)''' | ||
:$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm | :$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm | ||
50}\hspace{0.05cm} t }) + {\rm j} \cdot{\rm 1 \hspace{0.05cm} V} | 50}\hspace{0.05cm} t }) + {\rm j} \cdot{\rm 1 \hspace{0.05cm} V} | ||
Line 75: | Line 77: | ||
60}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ | 60}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ | ||
\omega_{\rm 60}\hspace{0.05cm} t }).$$ | \omega_{\rm 60}\hspace{0.05cm} t }).$$ | ||
− | + | The real part of this describes the actual physical signal: | |
:$$s(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm | :$$s(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm | ||
50}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ | 50}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ | ||
\omega_{\rm 60}\hspace{0.05cm} t }).$$ | \omega_{\rm 60}\hspace{0.05cm} t }).$$ | ||
− | + | Correct is the <u>proposed solution 3</u>: | |
− | * | + | *Considering the $50 \ \text{kHz}$ cosine signal alone, the first zero crossing would occur at $t_1 = T_0/4$ , i.e. after $5 \ {\rm µ s}$, where $T_0 = 1/f_{50} = 20 \ {\rm µ s}$ denotes the period duration of this signal. |
− | * | + | *The sinusoidal signal with the frequency $60 \ \text{kHz}$ is positive during the entire first half-wave $(0 \, \text{...} \, 8.33\ {\rm µ s})$ . |
− | * | + | *Due to the plus sign, the first zero crossing of $s(t) \ \Rightarrow \ t_1 > 5\ {\rm µ s}$ is delayed. |
− | * | + | *The middle graph shows the analytical signal at time $t = T_0/4$, when the red carrier would have its zero crossing. |
− | * | + | *The zero crossing of the violet cumulative pointer only occurs when it points in the direction of the imaginary axis. Then $s(t_1) = \text{Re}[s_+(t_1)] = 0$. |
+ | |||
− | '''(3)''' | + | '''(3)''' The maximum value of $|s_+(t)|$ is reached when both pointers point in the same direction. The magnitude of the sum pointer is then equal to the sum of the two individual pointers; i.e. $\underline {2\ \text{V}}$. |
− | + | This case is reached for the first time when the faster pointer with circular velocity $\omega_{60}$ has caught up its "lag" of $90^{\circ} \; (\pi /2)$ with the slower pointer ($\omega_{50}$) : | |
:$$\omega_{\rm 60} \cdot t_2 - \omega_{\rm | :$$\omega_{\rm 60} \cdot t_2 - \omega_{\rm | ||
50}\cdot t_2 = \frac{\pi}{2} \hspace{0.3cm} | 50}\cdot t_2 = \frac{\pi}{2} \hspace{0.3cm} | ||
Line 96: | Line 99: | ||
f_{\rm 50})} = \frac{1}{4 | f_{\rm 50})} = \frac{1}{4 | ||
\cdot(f_{\rm 60}- f_{\rm 50})}\hspace{0.15 cm}\underline{= {\rm 25 \hspace{0.05cm} {\rm µ s}}}.$$ | \cdot(f_{\rm 60}- f_{\rm 50})}\hspace{0.15 cm}\underline{= {\rm 25 \hspace{0.05cm} {\rm µ s}}}.$$ | ||
− | * | + | *At this point, the two pointers have made $5/4$ and $6/4$ rotations respectively and both point in the direction of the imaginary axis (see right graph). |
− | * | + | *The actual physical signal $s(t)$ – i.e. the real part of $s_+(t)$ – is therefore zero at this moment. |
+ | |||
− | '''(4)''' | + | '''(4)''' The condition for $|s_+(t_3)| = 0$ is that there is a phase offset of $180^\circ$ between the two equally long pointers so that they cancel each other out. |
+ | *This further means that the faster pointer has rotated $3\pi /2$ further than the $50 \ \text{kHz}$ component. | ||
− | + | *Analogous to the sample solution of sub-task '''(3)''' , therefore the following applies: | |
:$$t_3 = \frac{3\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} \hspace{0.15 cm}\underline{= | :$$t_3 = \frac{3\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} \hspace{0.15 cm}\underline{= | ||
{\rm 75 \hspace{0.05cm} {\rm µ s}}}.$$ | {\rm 75 \hspace{0.05cm} {\rm µ s}}}.$$ | ||
Line 109: | Line 114: | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]] |
Latest revision as of 04:15, 18 September 2022
The analytical signal $s_+(t)$ with the line spectrum
- $$S_{+}(f) = {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm 50})- {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm 60})$$
is to be considered. Here $f_{50}$ and $f_{60}$ are abbreviations for the frequencies $50 \ \text{kHz}$ and $60 \ \text{kHz}$, respectively.
This analytical signal could occur, for example, with the Single Sideband Amplitude Modulation $\text{(SSB–AM)}$ of a sinusoidal message signal $($Frequenz $f_{\rm N} = 10 \ \text{kHz})$ with a cosinusoidal carrier signal $(f_{\rm T} = 50 \ \text{kHz})$ , whereby only the upper sideband is transmitted ⇒ $\text{Upper Sideband Modulation}$.
However, the analytical signal could also result from a $\text{Lower Sideband Modulation}$ of the same sinusoidal signal if a sinusoidal carrier with frequency $f_{\rm T} = 60 \ \text{kHz}$ is used.
Hints:
- This exercise belongs to the chapter Analytical Signal and its Spectral Function.
- You can check your solution with the interaction module Physical and Analytical Signal.
Questions
Solution
(1) The analytical signal is generally:
- $$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } - {\rm j}\cdot{\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }.$$
At time $t = 0$ the complex exponential functions each take the value $1$ and one obtains (see left graph):
- $\text{Re}[s_+(t = 0)] \; \underline{= +1\ \text{V}}$,
- $\text{Im}[s_+(t = 0)]\; \underline{ = \,-\hspace{-0.08cm}1\ \text{V}}$.
(2) For the analytical signal it can also be written:
- $$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 50}\hspace{0.05cm} t }) + {\rm j} \cdot{\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 50}\hspace{0.05cm} t }) - {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 60}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 60}\hspace{0.05cm} t }).$$
The real part of this describes the actual physical signal:
- $$s(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 50}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 60}\hspace{0.05cm} t }).$$
Correct is the proposed solution 3:
- Considering the $50 \ \text{kHz}$ cosine signal alone, the first zero crossing would occur at $t_1 = T_0/4$ , i.e. after $5 \ {\rm µ s}$, where $T_0 = 1/f_{50} = 20 \ {\rm µ s}$ denotes the period duration of this signal.
- The sinusoidal signal with the frequency $60 \ \text{kHz}$ is positive during the entire first half-wave $(0 \, \text{...} \, 8.33\ {\rm µ s})$ .
- Due to the plus sign, the first zero crossing of $s(t) \ \Rightarrow \ t_1 > 5\ {\rm µ s}$ is delayed.
- The middle graph shows the analytical signal at time $t = T_0/4$, when the red carrier would have its zero crossing.
- The zero crossing of the violet cumulative pointer only occurs when it points in the direction of the imaginary axis. Then $s(t_1) = \text{Re}[s_+(t_1)] = 0$.
(3) The maximum value of $|s_+(t)|$ is reached when both pointers point in the same direction. The magnitude of the sum pointer is then equal to the sum of the two individual pointers; i.e. $\underline {2\ \text{V}}$.
This case is reached for the first time when the faster pointer with circular velocity $\omega_{60}$ has caught up its "lag" of $90^{\circ} \; (\pi /2)$ with the slower pointer ($\omega_{50}$) :
- $$\omega_{\rm 60} \cdot t_2 - \omega_{\rm 50}\cdot t_2 = \frac{\pi}{2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm}t_2 = \frac{\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} = \frac{1}{4 \cdot(f_{\rm 60}- f_{\rm 50})}\hspace{0.15 cm}\underline{= {\rm 25 \hspace{0.05cm} {\rm µ s}}}.$$
- At this point, the two pointers have made $5/4$ and $6/4$ rotations respectively and both point in the direction of the imaginary axis (see right graph).
- The actual physical signal $s(t)$ – i.e. the real part of $s_+(t)$ – is therefore zero at this moment.
(4) The condition for $|s_+(t_3)| = 0$ is that there is a phase offset of $180^\circ$ between the two equally long pointers so that they cancel each other out.
- This further means that the faster pointer has rotated $3\pi /2$ further than the $50 \ \text{kHz}$ component.
- Analogous to the sample solution of sub-task (3) , therefore the following applies:
- $$t_3 = \frac{3\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} \hspace{0.15 cm}\underline{= {\rm 75 \hspace{0.05cm} {\rm µ s}}}.$$