Difference between revisions of "Aufgaben:Exercise 1.4: Rayleigh PDF and Jakes PDS"

From LNTwww
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process}}
  
[[File:P_ID2119__Mob_A_1_4.png|right|frame| PDF and  $|z(t)|$  for Rayleigh Fading with Doppler effect]]
+
[[File:P_ID2119__Mob_A_1_4.png|right|frame| PDF and  $|z(t)|$  for Rayleigh fading with Doppler effect]]
 
We consider two different mobile radio channels with  [[Mobile_Communications/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Beispielhafte_Signalverl.C3.A4ufe_bei_Rayleigh.E2.80.93Fading|Rayleigh fading]]. In both cases the PDF of the magnitude  $a(t) = |z(t)| ≥ 0$  is
 
We consider two different mobile radio channels with  [[Mobile_Communications/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Beispielhafte_Signalverl.C3.A4ufe_bei_Rayleigh.E2.80.93Fading|Rayleigh fading]]. In both cases the PDF of the magnitude  $a(t) = |z(t)| ≥ 0$  is
 
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ -{a^2}/(2\sigma^2)}  
 
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ -{a^2}/(2\sigma^2)}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
The probability that this amount is not greater than a given value  $A$  is
+
The probability that this magnitude is not greater than a given value  $A$  is
 
:$${\rm Pr}(|z(t)| \le A) = 1 - {\rm e}^{ -{A^2}/(2\sigma^2)}  
 
:$${\rm Pr}(|z(t)| \le A) = 1 - {\rm e}^{ -{A^2}/(2\sigma^2)}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
The two channels, which are designated according to the colors „Red” and „Blue” in the graphs with  $\rm R$  and  $\rm B$  respectively, differ in the speed  $v$  and thus in the form of the power spectral density (PSD)   ${\it \Phi}_z(f_{\rm D})$.  
+
The two channels, which are designated according to the colors "Red" and "Blue" in the graphs with  $\rm R$  and  $\rm B$  respectively, differ in the speed  $v$  and thus in the form of the power-spectral density  $\rm (PSD)$   ${\it \Phi}_z(f_{\rm D})$.  
  
*In both cases, however, the PSD is a [[Mobile_Communications/Statistical_bindings_within_the_Rayleigh_process|Jakes spectrum]].
+
*In both cases, however, the PDS is a [[Mobile_Communications/Statistical_bindings_within_the_Rayleigh_process|Jakes spectrum]].
  
*For a Doppler frequency&nbsp; $f_{\rm D}$&nbsp; with&nbsp; $|f_{\rm D}| <f_{\rm D,\hspace{0.05cm}max}$&nbsp; the Jakes spectrum is given by
+
*For a Doppler frequency&nbsp; $f_{\rm D}$&nbsp; with&nbsp; $|f_{\rm D}| <f_{\rm D,\hspace{0.1cm}max}$&nbsp; the Jakes spectrum is given by
:$${\it \pi}_z(f_{\rm D}) = \frac{1}{\pi \hspace{-0.05cm}\cdot \hspace{-0.05cm}f_{\rm D, \hspace{0.05cm} max}  \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt{ 1 \hspace{-0.05cm}- \hspace{-0.05cm}(f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2}  }
+
:$${\it \Phi}_z(f_{\rm D}) = \frac{1}{\pi \hspace{-0.05cm}\cdot \hspace{-0.05cm}f_{\rm D, \hspace{0.1cm} max}  \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt{ 1 \hspace{-0.05cm}- \hspace{-0.05cm}(f_{\rm D}/f_{\rm D, \hspace{0.1cm} max})^2}  }
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*For Doppler frequencies outside this interval from&nbsp; $-f_{\rm D,\hspace{0.05cm}max}$&nbsp; to&nbsp; $+f_{\rm D,\hspace{0.05cm}max}$, &nbsp; we have ${\it \pi}_z(f_{\rm D})=0$.  
+
*For Doppler frequencies outside this interval from&nbsp; $-f_{\rm D,\hspace{0.1cm}max}$&nbsp; to&nbsp; $+f_{\rm D,\hspace{0.1cm}max}$, &nbsp; we have ${\it \Phi}_z(f_{\rm D})=0$.  
  
  
The corresponding descriptor in the time domain is the autocorrelation function (ACF):
+
The corresponding descriptor in the time domain is the auto-correlation function&nbsp; $\rm (ACF)$:
:$$\varphi_z ({\rm \delta}t) = 2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot {\rm \delta}t)\hspace{0.05cm}.$$
+
:$$\varphi_z ({\rm \delta}t) = 2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.1cm} max} \cdot {\rm \delta}t)\hspace{0.05cm}.$$
  
*Here,&nbsp; ${\rm J_0}(.)$&nbsp; is the <i>Bessel function of the first kind and zeroth order</i>. We have &nbsp; ${\rm J_0}(0) = 1$.
+
*Here,&nbsp; ${\rm J_0}(.)$&nbsp; is the Bessel function of the first kind and zeroth order.&nbsp; We have&nbsp; ${\rm J_0}(0) = 1$.
*The maximum Doppler frequency of the channel model &nbsp;$\rm R$&nbsp;: is known to be &nbsp; $f_{\rm D,\hspace{0.05cm}max} = 200 \ \rm Hz$.  
+
*The maximum Doppler frequency of the channel model &nbsp;$\rm R$&nbsp; is known to be &nbsp; $f_{\rm D,\hspace{0.1cm}max} = 200 \ \rm Hz$.  
 
* It is also known that the speeds&nbsp; $v_{\rm R}$&nbsp; and&nbsp; $v_{\rm B}$&nbsp; differ by the factor&nbsp; $2$&nbsp;.  
 
* It is also known that the speeds&nbsp; $v_{\rm R}$&nbsp; and&nbsp; $v_{\rm B}$&nbsp; differ by the factor&nbsp; $2$&nbsp;.  
 
*Whether&nbsp; $v_{\rm R}$&nbsp; is twice as large as&nbsp; $v_{\rm B}$&nbsp; or vice versa, you should decide based on the above graphs.
 
*Whether&nbsp; $v_{\rm R}$&nbsp; is twice as large as&nbsp; $v_{\rm B}$&nbsp; or vice versa, you should decide based on the above graphs.
Line 37: Line 37:
  
 
''Notes:''  
 
''Notes:''  
* This task belongs to the topic of&nbsp; [[Mobile_Communications/Statistical_bindings_within_the_Rayleigh_process|Statistical bindings within the Rayleigh process]].  
+
* This task belongs to the topic of&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PDS_with_Rayleigh.E2.80.93Fading|Statistical bindings within the Rayleigh process]].  
 
* To check your results you can use the interactive applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments of Special Distributions]].
 
* To check your results you can use the interactive applet&nbsp; [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|PDF, CDF and Moments of Special Distributions]].
 
   
 
   
Line 53: Line 53:
 
$\sigma_{\rm B} \ = \ $ { 1 3% } $\ \ \rm $
 
$\sigma_{\rm B} \ = \ $ { 1 3% } $\ \ \rm $
  
{In each case, give the probability that&nbsp; $20 \cdot {\rm lg} \ a &#8804; &ndash;10 \ \ \ \rm dB$&nbsp; which is also&nbsp; $a &#8804; 0.316$&nbsp; at the same time.
+
{In each case, give the probability that&nbsp; $20 \cdot {\rm lg} \ a &#8804; -10 \ \ \ \rm dB$ &nbsp; &rArr; &nbsp; $a &#8804; 0.316$.
 
|type="{}"}
 
|type="{}"}
 
Channel &nbsp;${\rm R}\text{:} \hspace{0.4cm}  {\rm Pr}(a ≤ 0.316) \ = \ $ { 4.9 3% } $\ \rm \%$
 
Channel &nbsp;${\rm R}\text{:} \hspace{0.4cm}  {\rm Pr}(a ≤ 0.316) \ = \ $ { 4.9 3% } $\ \rm \%$
Line 63: Line 63:
 
+ $v_{\rm B}$&nbsp; is half as big as&nbsp; $v_{\rm R}$.
 
+ $v_{\rm B}$&nbsp; is half as big as&nbsp; $v_{\rm R}$.
 
+ With&nbsp; $v = 0$,&nbsp;&nbsp; $|z(t)|$&nbsp; would be constant.
 
+ With&nbsp; $v = 0$,&nbsp;&nbsp; $|z(t)|$&nbsp; would be constant.
- With&nbsp; $v = 0$&nbsp;&nbsp; $|z(t)|$&nbsp; would have a white spectrum.
+
- With&nbsp; $v = 0$,&nbsp;&nbsp; $|z(t)|$&nbsp; would have a white spectrum.
- With&nbsp; $v &#8594; &#8734;$&nbsp;&nbsp; $|z(t)|$&nbsp; would be constant.
+
- With&nbsp; $v &#8594; &#8734;$,&nbsp;&nbsp; $|z(t)|$&nbsp; would be constant.
+ With&nbsp; $v &#8594; &#8734;$&nbsp;&nbsp; $|z(t)|$&nbsp; would be white.
+
+ With&nbsp; $v &#8594; &#8734;$,&nbsp;&nbsp; $|z(t)|$&nbsp; would be white.
  
 
{Which of the following statements are correct?
 
{Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- The PSD value&nbsp; ${\it \Phi_z}(f_{\rm D} = 0)$&nbsp; is the same for both channels.
+
- The PDS value&nbsp; ${\it \Phi_z}(f_{\rm D} = 0)$&nbsp; is the same for both channels.
 
+ The ACF value&nbsp; $\varphi_z(\Delta t = 0)$&nbsp; is the same for both channels.
 
+ The ACF value&nbsp; $\varphi_z(\Delta t = 0)$&nbsp; is the same for both channels.
 
+ The area under&nbsp; ${\it \Phi_z}(f_{\rm D})$&nbsp; is the same for both channels.
 
+ The area under&nbsp; ${\it \Phi_z}(f_{\rm D})$&nbsp; is the same for both channels.
Line 76: Line 76:
  
  
===Solutions===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The maximum value of the PDF for both channels is $0.6$ and occurs at $a = 1$.  
+
'''(1)'''&nbsp; The maximum value of the PDF for both channels is&nbsp; $0.6$&nbsp; and occurs at&nbsp; $a = 1$.  
 
*The Rayleigh PDF and its derivative are
 
*The Rayleigh PDF and its derivative are
 
:$$f_a(a) \hspace{-0.1cm} = \hspace{-0.1cm} \frac{a}{\sigma^2} \cdot {\rm e}^{ -a^2/(2\sigma^2)} \hspace{0.05cm},$$
 
:$$f_a(a) \hspace{-0.1cm} = \hspace{-0.1cm} \frac{a}{\sigma^2} \cdot {\rm e}^{ -a^2/(2\sigma^2)} \hspace{0.05cm},$$
Line 84: Line 84:
 
  \frac{a^2}{\sigma^4} \cdot {\rm e}^{ -a^2/(2\sigma^2)} \hspace{0.05cm}.$$
 
  \frac{a^2}{\sigma^4} \cdot {\rm e}^{ -a^2/(2\sigma^2)} \hspace{0.05cm}.$$
  
*By setting the derivative to $0$, you can show that the maximum of the PDF occurs at $a = \sigma$. Since the Rayleigh PDF applies to both channels, it follows that
+
*By setting the derivative to&nbsp; $0$, you can show that the maximum of the PDF occurs at&nbsp; $a = \sigma$.&nbsp; Since the Rayleigh PDF applies to both channels, it follows that
 
:$$\sigma_{\rm R} = \sigma_{\rm B} \hspace{0.15cm} \underline{ = 1} \hspace{0.05cm}.$$
 
:$$\sigma_{\rm R} = \sigma_{\rm B} \hspace{0.15cm} \underline{ = 1} \hspace{0.05cm}.$$
  
Line 95: Line 95:
  
  
'''(3)'''&nbsp; <u>The correct solutions are 2, 3 and 6</u>:
+
'''(3)'''&nbsp; <u>The correct statements are 2, 3 and 6</u>:
* The smaller speed $v_{\rm B}$ can be recognized by the fact that the magnitude $|z(t)|$ changes more slowly with the blue curve.
+
* The smaller speed&nbsp; $v_{\rm B}$&nbsp; can be recognized by the fact that the magnitude&nbsp; $|z(t)|$&nbsp; changes more slowly with the blue curve.
* When the vehicle is stationary, the PSD degenerates to ${\it \Phi_z}(f_{\rm D}) = 2\sigma^2\cdot \delta(f_{\rm D})$, and we have $|z(t)| = A = \rm const.$, where the constant $A$ is drawn from the Rayleigh distribution.
+
* When the vehicle is stationary, the PDS degenerates to&nbsp; ${\it \Phi_z}(f_{\rm D}) = 2\sigma^2\cdot \delta(f_{\rm D})$,&nbsp; and we have&nbsp; $|z(t)| = A = \rm const.$, where the constant&nbsp; $A$&nbsp; is drawn from the Rayleigh distribution.
* At extremely high speed, the Jakes spectrum becomes flat and has an increasingly smaller magnitude over an increasingly wide range. It then approaches the PSD of white noise. However, $v$ would have to be in the order of the speed of light.
+
* At extremely high speed, the Jakes spectrum becomes flat and has an increasingly small magnitude over an increasingly wide range.&nbsp; It then approaches the PDS of white noise.&nbsp; However,&nbsp; $v$&nbsp; would have to be in the order of the speed of light.
  
  
 
'''(4)'''&nbsp; <u>Statements 2 and 3</u> are correct:  
 
'''(4)'''&nbsp; <u>Statements 2 and 3</u> are correct:  
*The Rayleigh parameter $\sigma = 1$ also determines the &bdquo;power&rdquo; ${\rm E}[|z(t)|^2] = 2\sigma^2 = 2$ of the random process.  
+
*The Rayleigh parameter&nbsp; $\sigma = 1$&nbsp; also determines the "power"&nbsp; ${\rm E}[|z(t)|^2] = 2\sigma^2 = 2$&nbsp; of the random process.  
*This applies to both '''R''' and '''B''':
+
*This applies to both&nbsp; $\rm R$&nbsp; and&nbsp; $\rm B$:
 
:$$\varphi_z ({\rm \delta}t = 0) = 2 \hspace{0.05cm}, \hspace{0.2cm} \int_{-\infty}^{+\infty}{\it \Phi}_z(f_{\rm D}) \hspace{0.15cm}{\rm d}f_{\rm D} = 2 \hspace{0.05cm}.$$
 
:$$\varphi_z ({\rm \delta}t = 0) = 2 \hspace{0.05cm}, \hspace{0.2cm} \int_{-\infty}^{+\infty}{\it \Phi}_z(f_{\rm D}) \hspace{0.15cm}{\rm d}f_{\rm D} = 2 \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 109: Line 109:
  
  
[[Category:Exercises for Mobile Communications|^1.3 Rayleigh Fading with Memory^]]
+
[[Category:Mobile Communications: Exercises|^1.3 Rayleigh Fading with Memory^]]

Latest revision as of 07:05, 18 September 2022

PDF and  $|z(t)|$  for Rayleigh fading with Doppler effect

We consider two different mobile radio channels with  Rayleigh fading. In both cases the PDF of the magnitude  $a(t) = |z(t)| ≥ 0$  is

$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm e}^{ -{a^2}/(2\sigma^2)} \hspace{0.05cm}.$$

The probability that this magnitude is not greater than a given value  $A$  is

$${\rm Pr}(|z(t)| \le A) = 1 - {\rm e}^{ -{A^2}/(2\sigma^2)} \hspace{0.05cm}.$$

The two channels, which are designated according to the colors "Red" and "Blue" in the graphs with  $\rm R$  and  $\rm B$  respectively, differ in the speed  $v$  and thus in the form of the power-spectral density  $\rm (PSD)$   ${\it \Phi}_z(f_{\rm D})$.

  • For a Doppler frequency  $f_{\rm D}$  with  $|f_{\rm D}| <f_{\rm D,\hspace{0.1cm}max}$  the Jakes spectrum is given by
$${\it \Phi}_z(f_{\rm D}) = \frac{1}{\pi \hspace{-0.05cm}\cdot \hspace{-0.05cm}f_{\rm D, \hspace{0.1cm} max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt{ 1 \hspace{-0.05cm}- \hspace{-0.05cm}(f_{\rm D}/f_{\rm D, \hspace{0.1cm} max})^2} } \hspace{0.05cm}.$$
  • For Doppler frequencies outside this interval from  $-f_{\rm D,\hspace{0.1cm}max}$  to  $+f_{\rm D,\hspace{0.1cm}max}$,   we have ${\it \Phi}_z(f_{\rm D})=0$.


The corresponding descriptor in the time domain is the auto-correlation function  $\rm (ACF)$:

$$\varphi_z ({\rm \delta}t) = 2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.1cm} max} \cdot {\rm \delta}t)\hspace{0.05cm}.$$
  • Here,  ${\rm J_0}(.)$  is the Bessel function of the first kind and zeroth order.  We have  ${\rm J_0}(0) = 1$.
  • The maximum Doppler frequency of the channel model  $\rm R$  is known to be   $f_{\rm D,\hspace{0.1cm}max} = 200 \ \rm Hz$.
  • It is also known that the speeds  $v_{\rm R}$  and  $v_{\rm B}$  differ by the factor  $2$ .
  • Whether  $v_{\rm R}$  is twice as large as  $v_{\rm B}$  or vice versa, you should decide based on the above graphs.




Notes:




Questionns

1

Determine the Rayleigh parameter  $\sigma$  for the channels  $\rm R$  and  $\rm B$.

$\sigma_{\rm R} \ = \ $

$\ \ \rm $
$\sigma_{\rm B} \ = \ $

$\ \ \rm $

2

In each case, give the probability that  $20 \cdot {\rm lg} \ a ≤ -10 \ \ \ \rm dB$   ⇒   $a ≤ 0.316$.

Channel  ${\rm R}\text{:} \hspace{0.4cm} {\rm Pr}(a ≤ 0.316) \ = \ $

$\ \rm \%$
Channel  ${\rm B}\text{:} \hspace{0.4cm} {\rm Pr}(a ≤ 0.316) \ = \ $

$\ \rm \%$

3

Which statements are correct regarding the driving speeds  $v$ ?

$v_{\rm B}$  is twice as big as  $v_{\rm R}$.
$v_{\rm B}$  is half as big as  $v_{\rm R}$.
With  $v = 0$,   $|z(t)|$  would be constant.
With  $v = 0$,   $|z(t)|$  would have a white spectrum.
With  $v → ∞$,   $|z(t)|$  would be constant.
With  $v → ∞$,   $|z(t)|$  would be white.

4

Which of the following statements are correct?

The PDS value  ${\it \Phi_z}(f_{\rm D} = 0)$  is the same for both channels.
The ACF value  $\varphi_z(\Delta t = 0)$  is the same for both channels.
The area under  ${\it \Phi_z}(f_{\rm D})$  is the same for both channels.
The area below  $\varphi_z(\Delta t)$  is the same for both channels.


Solution

(1)  The maximum value of the PDF for both channels is  $0.6$  and occurs at  $a = 1$.

  • The Rayleigh PDF and its derivative are
$$f_a(a) \hspace{-0.1cm} = \hspace{-0.1cm} \frac{a}{\sigma^2} \cdot {\rm e}^{ -a^2/(2\sigma^2)} \hspace{0.05cm},$$
$$\frac{{\rm d}f_a(a)}{{\rm d}a} \hspace{-0.1cm} = \hspace{-0.1cm} \frac{1}{\sigma^2} \cdot {\rm e}^{ -a^2/(2\sigma^2)}- \frac{a^2}{\sigma^4} \cdot {\rm e}^{ -a^2/(2\sigma^2)} \hspace{0.05cm}.$$
  • By setting the derivative to  $0$, you can show that the maximum of the PDF occurs at  $a = \sigma$.  Since the Rayleigh PDF applies to both channels, it follows that
$$\sigma_{\rm R} = \sigma_{\rm B} \hspace{0.15cm} \underline{ = 1} \hspace{0.05cm}.$$


(2)  As they fading coefficients have the same PDF, the desired probability is also the same for both channels.

  • Using the given equation, we have
$${\rm Pr}(a \le 0.316) = {\rm Pr}(20 \cdot {\rm lg}\hspace{0.15cm} a \le -10\,\,{\rm dB}) = 1 - {\rm e}^{ -{0.316^2}/(2\sigma^2)} = 1- 0.951 \hspace{0.15cm} \underline{ \approx 4.9 \%} \hspace{0.05cm}.$$


(3)  The correct statements are 2, 3 and 6:

  • The smaller speed  $v_{\rm B}$  can be recognized by the fact that the magnitude  $|z(t)|$  changes more slowly with the blue curve.
  • When the vehicle is stationary, the PDS degenerates to  ${\it \Phi_z}(f_{\rm D}) = 2\sigma^2\cdot \delta(f_{\rm D})$,  and we have  $|z(t)| = A = \rm const.$, where the constant  $A$  is drawn from the Rayleigh distribution.
  • At extremely high speed, the Jakes spectrum becomes flat and has an increasingly small magnitude over an increasingly wide range.  It then approaches the PDS of white noise.  However,  $v$  would have to be in the order of the speed of light.


(4)  Statements 2 and 3 are correct:

  • The Rayleigh parameter  $\sigma = 1$  also determines the "power"  ${\rm E}[|z(t)|^2] = 2\sigma^2 = 2$  of the random process.
  • This applies to both  $\rm R$  and  $\rm B$:
$$\varphi_z ({\rm \delta}t = 0) = 2 \hspace{0.05cm}, \hspace{0.2cm} \int_{-\infty}^{+\infty}{\it \Phi}_z(f_{\rm D}) \hspace{0.15cm}{\rm d}f_{\rm D} = 2 \hspace{0.05cm}.$$