Difference between revisions of "Aufgaben:Exercise 1.12: Hard Decision vs. Soft Decision"

From LNTwww
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
  
[[File:P_ID2408__KC_A_1_12.png|right|frame|Blockfehlerrate des&nbsp; $\rm HC(7, \, 4, \, 3)$&nbsp; bei <br>&bdquo;Hard Decision&rdquo; und &bdquo;Soft Decision&rdquo;]]
+
[[File:EN_KC_A_1_12.png|right|frame|Block error rate of the&nbsp; $\rm HC(7, \, 4, \, 3)$&nbsp; for <br>"Hard Decision" and "Soft Decision"]]
  
Die Abbildung zeigt die Blockfehlerwahrscheinlichkeit für den&nbsp; [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Einige_Eigenschaften_des_.287.2C_4.2C_3.29.E2.80.93Hamming.E2.80.93Codes|$(7, \, 4, \, 3)$–Hamming–Code]], wobei für den Empfänger zwei Varianten berücksichtigt sind:
+
The figure shows the block error probability for the&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes#Some_properties_of_the_.287.2C_4.2C_3.29_Hamming_code|"$(7, \, 4, \, 3)$ Hamming code"]],&nbsp; where two variants are considered for the receiver:
  
*Bei Maximum–Likelihood–Detektion mit harten Entscheidungen $($&bdquo;Hard Decision&rdquo;, &nbsp;$\rm HD)$, die im vorliegenden Fall (perfekter Code) auch durch Syndromdecodierung realisiert werden kann, ergibt sich die rote Kurve (mit Kreismarkierung).
+
*Maximum likelihood decoding with hard decisions&nbsp; $($"Hard Decision", &nbsp;$\rm HD)$,&nbsp; which in the present case&nbsp; $($perfect code$)$&nbsp; can also be realized by syndrome decoding,&nbsp; yields the red curve&nbsp; $($with circle marker$)$.
  
*Der Kanal kann bei &bdquo;Hard Decision&rdquo; vereinfacht durch das BSC–Modell ersetzt werden. Der Zusammenhang zwischen dem BSC–Parameter&nbsp; $\varepsilon$&nbsp; und dem AWGN–Quotienten&nbsp; $E_{\rm B}/N_{0}$&nbsp; (in der Grafik verwendet) ist wie folgt gegeben:
+
*The channel can be replaced by the BSC model in a simplified way for&nbsp; "Hard Decision".&nbsp; The relationship between the BSC parameter&nbsp; $\varepsilon$&nbsp; and the AWGN quotient&nbsp; $E_{\rm B}/N_{0}$&nbsp; $($used in the graph$)$ is given as follows:
  
 
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$
 
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$
  
:Hier bezeichnet&nbsp; ${\rm Q}(x)$&nbsp; die ''komplementäre Gaußsche Fehlerfunktion'' und&nbsp; $R$&nbsp; die Coderate.
+
:Here&nbsp; ${\rm Q}(x)$&nbsp; denotes the&nbsp; "complementary Gaussian error function"&nbsp; and&nbsp; $R$&nbsp; the code rate.
  
*Die grüne Kurve (mit Kreuzen) zeigt die Blockfehlerwahrscheinlichkeit bei „weichen” Entscheidungen $($&bdquo;Soft Decision&rdquo;, &nbsp;$\rm SD)$. Dieser Funktionsverlauf lässt sich nicht in geschlossen–mathematischer Form angeben. Die in der Grafik eingezeichnete Kurve ist eine in [Fri96] angegebene obere Schranke:
+
*The green curve&nbsp; $($with crosses$)$ shows the block error probability for soft decisions&nbsp; $($"Soft Decision", &nbsp;$\rm SD)$.&nbsp; This curve cannot be given in closed-mathematical form.&nbsp; The curve drawn in the graph is an upper bound given in&nbsp; [Fri96]:
  
:$$ {\rm Pr(Blockfehler)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$
+
:$$ {\rm Pr(block\:error)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$
  
:*Der jeweils erste Faktor im Argument der&nbsp; $\rm Q$–Funktion gibt die möglichen Hamming–Distanzen an: &nbsp; $i = 3, \, 4, \, 7$.  
+
:#The respective first factor in the arguments of the&nbsp; $\rm Q$&ndash;function indicates Hamming distances &nbsp; &rArr; &nbsp; $i = 3, \, 4, \, 7$.  
:*Die Vorfaktoren berücksichtigen die Vielfachheiten&nbsp; $W_{3} = W_{4} = 7$&nbsp; und&nbsp; $W_{7} = 1$. &nbsp; $R = 4/7$&nbsp; beschreibt die Coderate.  
+
:#The prefactors take into account&nbsp; "multiplicities"&nbsp; $W_{3} = W_{4} = 7$&nbsp; and&nbsp; $W_{7} = 1$. &nbsp;  
:*Für&nbsp; $10 · \lg {E_{\rm B}/N_0} > 8  \ \rm dB$&nbsp; ist&nbsp; $\rm Pr(Blockfehler) < 10^{–5}$.
+
:#$R = 4/7$&nbsp; describes the code rate.  
 +
:#For&nbsp; $10 · \lg {E_{\rm B}/N_0} > 8  \ \rm dB$&nbsp; &rArr; &nbsp; $\rm Pr(block\:error) < 10^{–5}$.
  
  
Line 25: Line 26:
  
  
 +
Hints:
 +
* This exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding of Linear Block Codes"]].
 +
 +
* The above cited bibliography&nbsp; [Fri96]&nbsp; refers to the book <br>"Friedrichs, B.: Kanalcodierung - Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin - Heidelberg: Springer, 1996".
  
 +
*For numerical results,&nbsp; use our calculation applet&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Functions"]].
  
''Hinweise:''
+
*For the subtasks&nbsp; '''(1)'''&nbsp; to&nbsp; '''(4)''',&nbsp; "Hard Decision" is always assumed.
* Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Kanalcodierung/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].
 
* Die oben zitierte Literaturstelle&nbsp; [Fri96]&nbsp; verweist auf das Buch <br>&bdquo;Friedrichs, B.: Kanalcodierung – Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin – Heidelberg: Springer, 1996&rdquo;.
 
* Verwenden Sie für numerische Ergebnisse das Berechnungsmodul&nbsp; [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)|Komplementäre Gaußsche Fehlerfunktionen]].
 
*Für die Teilaufgaben '''(1)''' bis '''(4)''' wird stets von  &bdquo;Hard Decision&rdquo; ausgegangen.
 
 
   
 
   
  
Line 37: Line 39:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Blockfehlerwahrscheinlichkeit besitzt der&nbsp; $(7, \, 4, \, 3)$–Hamming–Code bei &bdquo;Hard Decision&rdquo;?
+
{What is the block error probability of the&nbsp; $(7, \, 4, \, 3)$ Hamming code in&nbsp; "Hard Decision"?
 
|type="{}"}
 
|type="{}"}
$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(Blockfehler)} \ = \ $ { 2.03 3% } $\ \cdot 10^{-3} $
+
$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $ { 2.03 3% } $\ \cdot 10^{-3} $
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(Blockfehler)} \ = \ $ { 0.0209 3% } $\ \cdot 10^{-3} $
+
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $ { 0.021 3% } $\ \cdot 10^{-3} $
  
{Wie kann man die Blockfehlerwahrscheinlichkeit eines Hamming–Codes annähern, &bdquo;Hard Decision&rdquo;  vorausgesetzt?
+
{How can we approximate the block error probability of a Hamming code,&nbsp; assuming "Hard Decision"?
 
|type="()"}
 
|type="()"}
+ ${\rm Pr(Blockfehler)} = n · (n–1)/2 · \varepsilon^2.$
+
+ ${\rm Pr(block\:error)} = n · (n–1)/2 · \varepsilon^2.$
- ${\rm Pr(Blockfehler)} = n ·  \varepsilon^2.$
+
- ${\rm Pr(block\:error)} = n ·  \varepsilon^2.$
- ${\rm Pr(Blockfehler)} = n  · \varepsilon^n.$
+
- ${\rm Pr(block\:error)} = n  · \varepsilon^n.$
  
{Welcher Hamming–Code besitzt die kleinste Blockfehlerwahrscheinlichkeit bei konstantem BSC–Parameter&nbsp; $\varepsilon$?
+
{Which Hamming code has the smallest block error probability with constant BSC parameter&nbsp; $\varepsilon$?
 
|type="()"}
 
|type="()"}
+ der Hamming–Code&nbsp; $(3, \, 1, \, 3)$, identisch mit dem &bdquo;Repetition Code&rdquo;&nbsp; $\rm RC \ (3, \, 1, \, 3)$,
+
+ the Hamming code&nbsp; $(3, \, 1, \, 3)$,&nbsp; identical to the&nbsp; "repetition code"&nbsp; $\rm RC \ (3, \, 1, \, 3)$,
- der Hamming–Code&nbsp; $(7, \, 4, \, 3)$,
+
- the Hamming code&nbsp; $(7, \, 4, \, 3)$,
- der Hamming–Code&nbsp; $(15, \, 11, \, 3)$.
+
- the Hamming code&nbsp; $(15, \, 11, \, 3)$.
  
{Welcher numerische Zusammenhang besteht zwischen dem BSC–Parameter&nbsp; $\varepsilon$&nbsp; und dem AWGN–Quotienten&nbsp; $E_{\rm B}/N_{0}$?
+
{What is the numerical relationship between the BSC parameter&nbsp; $\varepsilon$&nbsp; and the AWGN quotient&nbsp; $E_{\rm B}/N_{0}$?
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon = 10^{-2}\text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $ { 6.77 3% } $\ \rm dB$
 
$\varepsilon = 10^{-2}\text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $ { 6.77 3% } $\ \rm dB$
 
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $ { 9.22 3% } $\ \rm dB$
 
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $ { 9.22 3% } $\ \rm dB$
  
{Welcher Gewinn (in dB) ist durch &bdquo;Soft Decision&rdquo; zu erzielen, wenn die Blockfehlerwahrscheinlichkeit den Wert&nbsp; $10^{–5}$&nbsp; nicht überschreiten soll?
+
{What is the gain&nbsp; $($in dB$)$&nbsp; to be achieved by&nbsp; "Soft Decision"&nbsp; if the block error probability is not to exceed&nbsp; $10^{-5}$ ?
 
|type="{}"}
 
|type="{}"}
 
$\ 10 · \lg \, {G_{\rm SD}} \ = \ $ { 1.52 3% } $ \ \rm dB$
 
$\ 10 · \lg \, {G_{\rm SD}} \ = \ $ { 1.52 3% } $ \ \rm dB$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Jeder Hamming–Code ist perfekt und weist eine minimale Distanz von $d_{\rm min} = 3$ auf.  
+
'''(1)'''&nbsp; Every Hamming code is perfect and has the minimum distance&nbsp; $d_{\rm min} = 3$.  
*Deshalb kann ein Bitfehler im Codewort korrigiert werden, während zwei Bitfehler stets zu einer Fehlentscheidung des Codewortes führen  &nbsp; ⇒ &nbsp; Parameter $t = 1$.  
+
*Therefore,&nbsp; one bit error in the code word can be corrected,&nbsp; while two bit errors will always cause the code word to fail &nbsp; ⇒ &nbsp; parameter&nbsp; $t = 1$.  
*Damit ergibt sich für die Blockfehlerwahrscheinlichkeit:
+
*Thus,&nbsp; for the block error probability:
  
:$${\rm Pr(Blockfehler)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(kein\hspace{0.15cm} Blockfehler)} - {\rm Pr(ein\hspace{0.15cm} Blockfehler)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
+
:$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
:$$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm}{\rm Pr(Blockfehler)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.99^7 - 7 \cdot 0.01 \cdot 0.99^6= 1 - 0.932065 - 0.065904\hspace{0.15cm}\underline{\approx 2.03 \cdot 10^{-3}}\hspace{0.05cm},$$
+
:$$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm}{\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.99^7 - 7 \cdot 0.01 \cdot 0.99^6= 1 - 0.932065 - 0.065904\hspace{0.15cm}\underline{\approx 2.03 \cdot 10^{-3}}\hspace{0.05cm},$$
:$$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(Blockfehler)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.999^7 - 7 \cdot 0.001 \cdot 0.999^6= 1 - 0.993021 - 0.006958\hspace{0.15cm}\underline{\approx 0.0209 \cdot 10^{-3}}\hspace{0.05cm}.$$
+
:$$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.999^7 - 7 \cdot 0.001 \cdot 0.999^6= 1 - 0.993021 - 0.006958\hspace{0.15cm}\underline{\approx 0.0209 \cdot 10^{-3}}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Ein jeder $(n, \, k, \, 3)$ Hamming–Code kann nur einen Bitfehler korrigieren. Für den BSC–Kanal gilt somit allgemein mit der Codewortlänge $n$:
+
'''(2)'''&nbsp; Each&nbsp; $(n, \, k, \, 3)$&nbsp; Hamming code can correct only one bit error.&nbsp; Thus,&nbsp; for the BSC channel,&nbsp; the general rule is with code word length&nbsp; $n$:
  
:$${\rm Pr(Blockfehler)} = 1 - \text{Pr(kein Bitfehler)} - \text{Pr(ein Bitfehler)}  = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
+
:$${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)}  = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
Nach Reihenentwicklung von &nbsp; $(1 - \varepsilon)^n$ &nbsp; bzw. von &nbsp; $n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$ &nbsp; erhält man hieraus:
+
*After series expansion of &nbsp; "$(1 - \varepsilon)^n$" &nbsp; or of &nbsp; "$n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$" &nbsp; we obtain from this:
:$${\rm Pr(Blockfehler)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
+
:$${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
  
Bei Vernachlässigung aller Terme mit $\varepsilon^3, \ \varepsilon^4, \ \text{...}$ ergibt sich schließlich:
+
*If we neglect all terms with&nbsp; $\varepsilon^3, \ \varepsilon^4, \ \text{...}$&nbsp; we finally get:
  
:$${\rm Pr(Blockfehler)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$
+
:$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$
  
Richtig ist somit <u>Lösungsvorschlag 1</u>.  
+
The correct solution is&nbsp; <u>suggestion 1</u>.
  
Für den $(7, \, 4, \, 3)$–Hamming–Code folgt daraus:
+
For the&nbsp; $(7, \, 4, \, 3)$&nbsp; Hamming code,&nbsp; it follows:  
  
:$${\rm Pr(Blockfehler)} \le \left\{ \begin{array}{c} 2.1 \cdot 10^{-3}\\ 2.1 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm f\ddot{u}r}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
+
:$${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
  
*Durch Vergleich mit dem Ergebnis der Teilaufgabe (1) erkennt man die Gültigkeit dieser Näherung.  
+
*By comparison with the result of the subtask&nbsp; '''(1)'''&nbsp; one recognizes the validity of this approximation.&nbsp; The smaller the BSC falsification probability $\varepsilon$,&nbsp; the better it is.
*Diese ist um so besser, je kleiner die BSC–Verfälschungswahrscheinlichkeit $\varepsilon$ ist.
 
  
  
'''(3)'''&nbsp; Die Ergebnisse der Teilaufgabe (2) lassen sich wie folgt zusammenfassen:
 
  
:$${\rm Pr(Blockfehler)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm f\ddot{u}r}\hspace{0.15cm} n = 3 \\ {\rm f\ddot{u}r}\hspace{0.15cm} n = 7 \\ {\rm f\ddot{u}r}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
+
'''(3)'''&nbsp; The results of subtask&nbsp; '''(2)'''&nbsp; can be summarized as follows:
  
Richtig ist <u>Antwort 1</u>. Die geringste Blockfehlerwahrscheinlichkeit besitzt natürlich der Hamming–Code mit der geringsten Rate $R = 1/3$, also mit der größten relativen Redundanz.
+
:$${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
  
 +
*Right is <u>answer 1</u>.&nbsp; Of course, the Hamming code with the lowest rate&nbsp; $R = 1/3$,&nbsp; i.e. with the greatest relative redundancy,&nbsp; has the lowest block error probability.
  
'''(4)'''&nbsp;  Bei Hard Decision gilt mit der komplementären Gaußschen Fehlerfunktion ${\rm Q}(x)$:
+
 
 +
'''(4)'''&nbsp;  At Hard Decision,&nbsp; with the complementary Gaussian error function&nbsp; ${\rm Q}(x)$:
  
 
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm}  
 
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm}  
 
  \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
  
Daraus erhält man mit $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
+
*From this we obtain with&nbsp; $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
  
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
 
+
* Analogously,&nbsp; for&nbsp; $\varepsilon = 0.001 \ ⇒ \ {\rm Q}^{-1}(\varepsilon) = 3.09$:
In analoger Weise ergibt sich für $\varepsilon = 0.001 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) 3.09$.
 
  
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(3.09) - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 9.22\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(3.09) - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 9.22\,{\rm dB}}\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Wir beziehen uns hier auf die Blockfehlerwahrscheinlichkeit $10^{–5}$.  
+
'''(5)'''&nbsp; Here we refer to the block error probability&nbsp; $10^{–5}$.  
  
Nach dem Ergebnis der Teilaufgabe (2) darf dann die BSC–Verfälschungswahrscheinlichkeit nicht größer sein als
+
*According to the result of subtask&nbsp; '''(2)''',&nbsp; the BSC falsification probability must then not be greater than
  
 
:$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
 
:$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
  
Mit ''Soft Decision'' genügen laut Angabe $8 \ {\rm dB} \ ⇒ \ 10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.
+
*For&nbsp; "Soft Decision"&nbsp; according to the specification graph:&nbsp; $10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 8\,{\rm dB}\hspace{0.05cm}$ &nbsp; &rArr; &nbsp;  $10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.5 Decodierung linearer Blockcodes
+
[[Category:Channel Coding: Exercises|^1.5 Linear Block Code Decoding
  
  
 
^]]
 
^]]

Latest revision as of 16:00, 30 September 2022

Block error rate of the  $\rm HC(7, \, 4, \, 3)$  for
"Hard Decision" and "Soft Decision"

The figure shows the block error probability for the  "$(7, \, 4, \, 3)$ Hamming code",  where two variants are considered for the receiver:

  • Maximum likelihood decoding with hard decisions  $($"Hard Decision",  $\rm HD)$,  which in the present case  $($perfect code$)$  can also be realized by syndrome decoding,  yields the red curve  $($with circle marker$)$.
  • The channel can be replaced by the BSC model in a simplified way for  "Hard Decision".  The relationship between the BSC parameter  $\varepsilon$  and the AWGN quotient  $E_{\rm B}/N_{0}$  $($used in the graph$)$ is given as follows:
$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$
Here  ${\rm Q}(x)$  denotes the  "complementary Gaussian error function"  and  $R$  the code rate.
  • The green curve  $($with crosses$)$ shows the block error probability for soft decisions  $($"Soft Decision",  $\rm SD)$.  This curve cannot be given in closed-mathematical form.  The curve drawn in the graph is an upper bound given in  [Fri96]:
$$ {\rm Pr(block\:error)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$
  1. The respective first factor in the arguments of the  $\rm Q$–function indicates Hamming distances   ⇒   $i = 3, \, 4, \, 7$.
  2. The prefactors take into account  "multiplicities"  $W_{3} = W_{4} = 7$  and  $W_{7} = 1$.  
  3. $R = 4/7$  describes the code rate.
  4. For  $10 · \lg {E_{\rm B}/N_0} > 8 \ \rm dB$  ⇒   $\rm Pr(block\:error) < 10^{–5}$.



Hints:

  • The above cited bibliography  [Fri96]  refers to the book
    "Friedrichs, B.: Kanalcodierung - Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin - Heidelberg: Springer, 1996".
  • For the subtasks  (1)  to  (4),  "Hard Decision" is always assumed.



Questions

1

What is the block error probability of the  $(7, \, 4, \, 3)$ Hamming code in  "Hard Decision"?

$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-3} $
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-3} $

2

How can we approximate the block error probability of a Hamming code,  assuming "Hard Decision"?

${\rm Pr(block\:error)} = n · (n–1)/2 · \varepsilon^2.$
${\rm Pr(block\:error)} = n · \varepsilon^2.$
${\rm Pr(block\:error)} = n · \varepsilon^n.$

3

Which Hamming code has the smallest block error probability with constant BSC parameter  $\varepsilon$?

the Hamming code  $(3, \, 1, \, 3)$,  identical to the  "repetition code"  $\rm RC \ (3, \, 1, \, 3)$,
the Hamming code  $(7, \, 4, \, 3)$,
the Hamming code  $(15, \, 11, \, 3)$.

4

What is the numerical relationship between the BSC parameter  $\varepsilon$  and the AWGN quotient  $E_{\rm B}/N_{0}$?

$\varepsilon = 10^{-2}\text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$

5

What is the gain  $($in dB$)$  to be achieved by  "Soft Decision"  if the block error probability is not to exceed  $10^{-5}$ ?

$\ 10 · \lg \, {G_{\rm SD}} \ = \ $

$ \ \rm dB$


Solution

(1)  Every Hamming code is perfect and has the minimum distance  $d_{\rm min} = 3$.

  • Therefore,  one bit error in the code word can be corrected,  while two bit errors will always cause the code word to fail   ⇒   parameter  $t = 1$.
  • Thus,  for the block error probability:
$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
$$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm}{\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.99^7 - 7 \cdot 0.01 \cdot 0.99^6= 1 - 0.932065 - 0.065904\hspace{0.15cm}\underline{\approx 2.03 \cdot 10^{-3}}\hspace{0.05cm},$$
$$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.999^7 - 7 \cdot 0.001 \cdot 0.999^6= 1 - 0.993021 - 0.006958\hspace{0.15cm}\underline{\approx 0.0209 \cdot 10^{-3}}\hspace{0.05cm}.$$


(2)  Each  $(n, \, k, \, 3)$  Hamming code can correct only one bit error.  Thus,  for the BSC channel,  the general rule is with code word length  $n$:

$${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)} = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
  • After series expansion of   "$(1 - \varepsilon)^n$"   or of   "$n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$"   we obtain from this:
$${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
  • If we neglect all terms with  $\varepsilon^3, \ \varepsilon^4, \ \text{...}$  we finally get:
$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$

The correct solution is  suggestion 1.

For the  $(7, \, 4, \, 3)$  Hamming code,  it follows:

$${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
  • By comparison with the result of the subtask  (1)  one recognizes the validity of this approximation.  The smaller the BSC falsification probability $\varepsilon$,  the better it is.


(3)  The results of subtask  (2)  can be summarized as follows:

$${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
  • Right is answer 1.  Of course, the Hamming code with the lowest rate  $R = 1/3$,  i.e. with the greatest relative redundancy,  has the lowest block error probability.


(4)  At Hard Decision,  with the complementary Gaussian error function  ${\rm Q}(x)$:

$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
  • From this we obtain with  $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
  • Analogously,  for  $\varepsilon = 0.001 \ ⇒ \ {\rm Q}^{-1}(\varepsilon) = 3.09$:
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(3.09) - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 9.22\,{\rm dB}}\hspace{0.05cm}.$$


(5)  Here we refer to the block error probability  $10^{–5}$.

  • According to the result of subtask  (2),  the BSC falsification probability must then not be greater than
$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
  • For  "Soft Decision"  according to the specification graph:  $10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 8\,{\rm dB}\hspace{0.05cm}$   ⇒   $10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.