Difference between revisions of "Aufgaben:Exercise 2.4Z: Finite and Infinite Fields"

From LNTwww
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Erweiterungskörper}}
+
{{quiz-Header|Buchseite=Channel_Coding/Extension_Field}}
  
[[File:P_ID2511__KC_Z_2_4.png|right|frame|Einige Pioniere der Mathematik]]
+
[[File:P_ID2511__KC_Z_2_4.png|right|frame|Some pioneers of mathematics]]
In der Mathematik unterscheidet man verschiedene Zahlenmengen:
+
In mathematics,  different sets of numbers are distinguished:
* die Menge der natürlichen Zahlen:  $\mathcal{N} = \{0, \, 1, \, 2, \hspace{0.05cm}\text{ ...} \}$,
+
* the set of natural numbers:  $\mathcal{N} = \{0, \, 1, \, 2, \hspace{0.05cm}\text{ ...} \}$,
* die Menge der ganzen Zahlen:  $\mathcal{Z} = \{\text{ ...}, \, -1, \, 0, \, +1, \hspace{0.05cm}\text{ ...}  \}$,
 
* die Menge der rationalen Zahlen:  $\mathcal{Q} = \{m/n\}$ mit $m ∈ \mathcal{Z}, \ n ∈ \mathcal{Z} \, \backslash \, \{0\}$,
 
* die Menge  $\mathcal{R}$  der reellen Zahlen,
 
* die Menge der komplexen Zahlen:  $\mathcal{C}= \{a + {\rm j} \cdot b\}$  mit  $a ∈ \mathcal{R}, \ b ∈ \mathcal{R}$  und der imaginären Einheit  $\rm j$.
 
  
 +
* the set of integers:  $\mathcal{Z} = \{\text{ ...}, \, -1, \, 0, \, +1, \hspace{0.05cm}\text{ ...}  \}$,
  
Eine solche Menge (englisch: &nbsp; <i>Set</i>&nbsp;) bezeichnet man dann (und nur dann) als einen&nbsp; '''Körper'''&nbsp; (englisch: &nbsp; <i>Field</i>&nbsp;) im algebraischen Sinne, wenn in ihr die vier Rechenoperationen Addition, Subtraktion, Multiplikation und Division erlaubt und die Ergebnisse im gleichen Körper darstellbar sind. Einige diesbezügliche Definitionen finden Sie im&nbsp; [[Channel_Coding/Einige_Grundlagen_der_Algebra#Gruppe.2C_Ring.2C_K.C3.B6rper_.E2.80.93_algebraische_Grundbegriffe|Theorieteil]]. Soviel vorneweg: &nbsp;Nicht alle der oben aufgelisteten Mengen sind Körper.
+
* the set of rational numbers:&nbsp; $\mathcal{Q} = \{m/n\}$ &nbsp; with &nbsp; $m &#8712; \mathcal{Z}, \ n &#8712; \mathcal{Z} \, \backslash \, \{0\}$,
  
Daneben gibt es auch noch&nbsp; [[Channel_Coding/Einige_Grundlagen_der_Algebra#Definition_eines_Galoisfeldes|endliche Körper]]&nbsp; (englisch: &nbsp; <i>Finite Fields</i>), die in unserem Lerntutorial  auch als&nbsp; <b>Galoisfeld</b>&nbsp; ${\rm GF}(P^m)$&nbsp; bezeichnet werden, wobei
+
* the set&nbsp; $\mathcal{R}$&nbsp; of real numbers,
* $P &#8712; \mathcal{P}$&nbsp; eine Primzahl angibt, und
 
* $m &#8712; \mathcal{N}$&nbsp; eine natürliche Zahl bezeichnet.
 
  
 +
* the set of complex numbers:&nbsp; $\mathcal{C}= \{a + {\rm j} \cdot b\}$&nbsp; with &nbsp; $a &#8712; \mathcal{R}, \ b &#8712; \mathcal{R}$&nbsp; and the imaginary unit&nbsp; "$\rm j$".
  
Ist der Exponent&nbsp; $m &#8805; 2$, so spricht man von einem&nbsp; [[Channel_Coding/Erweiterungsk%C3%B6rper|Erweiterungskörper]]&nbsp; (englisch: &nbsp; <i>Extension Field</i>&nbsp;). In dieser Aufgabe beschränken wir uns auf Erweiterungskörper zur Basis&nbsp; $P = 2$.
 
  
Die beiden ersten Teilaufgaben beziehen sich auf die Klassifizierung von Polynomen. Ein Grad&ndash;$m$&ndash;Polynom nennt man ''reduzibel''&nbsp; im Körper&nbsp; $\mathcal{F}$, wenn es in der Form
+
Such a set is called a&nbsp; "'''field'''"&nbsp; in the algebraic sense if&nbsp; (and only if)&nbsp; the four arithmetic operations addition, subtraction, multiplication and division are allowed in it and the results are representable in the same field.
 +
 
 +
Some related definitions can be found in the&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Group.2C_ring.2C_field_-_basic_algebraic_concepts|"theory section"]].&nbsp; So much up front: &nbsp;Not all of the sets listed here are fields.
 +
 
 +
Besides,&nbsp; there are also&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Definition_of_a_Galois_field|"finite fields"]],&nbsp; which in our learning tutorial are also called&nbsp; "Galois field"&nbsp; ${\rm GF}(P^m)$&nbsp; where
 +
* $P &#8712; \mathcal{P}$&nbsp; denotes a prime number, and
 +
 
 +
* $m &#8712; \mathcal{N}$&nbsp; denotes a natural number.
 +
 
 +
 
 +
If the exponent&nbsp; $m \ge 2$,&nbsp; it is called an&nbsp; [[Channel_Coding/Extension_Field|"extension field"]].&nbsp; In this exercise we restrict ourselves to extension fields to the base&nbsp; $P = 2$.
 +
 
 +
The first two subtasks are related to the classification of polynomials.
 +
 
 +
*A degree-m polynomial is called&nbsp; "reducible"&nbsp; in the field&nbsp; $\mathcal{F}$&nbsp; if it is representable in the form
 
:$$p(x)= \prod_{i = 1}^m (x-x_i) = (x - x_1)  \cdot  (x - x_2) \cdot  \hspace{0.05cm}\text{ ...}\hspace{0.05cm} \cdot (x - x_m) $$
 
:$$p(x)= \prod_{i = 1}^m (x-x_i) = (x - x_1)  \cdot  (x - x_2) \cdot  \hspace{0.05cm}\text{ ...}\hspace{0.05cm} \cdot (x - x_m) $$
  
darstellbar ist und für alle Nullstellen $x_i &#8712; \mathcal{F}$ gilt. Ist dies nicht möglich, so spricht man von einem ''irreduziblen Polynom''.
+
and holds for all zeros&nbsp; $x_i &#8712; \mathcal{F}$.  
  
 +
*If this is not possible,&nbsp; one speaks of an&nbsp; "irreducible polynomial".
  
  
Line 29: Line 39:
  
  
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Extension_Field|"Extension Field"]].
  
 +
* Above you can see illustrations of the Italian mathematicians&nbsp; [https://en.wikipedia.org/wiki/Gerolamo_Cardano Gerolamo Cardano]&nbsp; and&nbsp; [https://en.wikipedia.org/wiki/Rafael_Bombelli Rafael Bombelli], who first introduced imaginary numbers to solve algebraic equations, and of&nbsp; [https://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois], who established the foundations of finite fields at a very young age.
  
''Hinweise:''
 
* Die Aufgabe gehört zum  Kapitel&nbsp; [[Channel_Coding/Erweiterungsk%C3%B6rper|Erweiterungskörper]].
 
* Oben sehen Sie Abbildungen der italienischen Mathematiker&nbsp; [https://de.wikipedia.org/wiki/Gerolamo_Cardano Gerolamo Cardano]&nbsp; sowie&nbsp; [https://de.wikipedia.org/wiki/Rafael_Bombelli Rafael Bombelli], die erstmals imaginäre Zahlen zur Lösung algebraischer Gleichungen einführten, sowie von&nbsp; [https://de.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois], der schon in sehr jungen Jahren die Grundlagen der endlichen Körper geschaffen hat.
 
  
  
 
+
===Questions===
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Polynome sind irreduzibel im reellen Körper&nbsp; $\mathcal{R}$?
+
{Which polynomials are irreducible in the real field&nbsp; $\mathcal{R}$?
 
|type="[]"}
 
|type="[]"}
 
+ $p_1(x) = x^2 + 1$.
 
+ $p_1(x) = x^2 + 1$.
Line 46: Line 55:
 
- $p_4(x) = x^2 + x - 2$.
 
- $p_4(x) = x^2 + x - 2$.
  
{Welche Polynome sind irreduzibel in&nbsp; $\rm GF(2)$?
+
{Which polynomials are irreducible in&nbsp; $\rm GF(2)$?
 
|type="[]"}
 
|type="[]"}
 
- $p_1(x) = x^2 + 1$,
 
- $p_1(x) = x^2 + 1$,
Line 53: Line 62:
 
- $p_4(x) = x^2 + x - 2$.
 
- $p_4(x) = x^2 + x - 2$.
  
{Bei welchen Mengen handelt es sich im algebraischen Sinne um Körper?
+
{Which sets are fields in the algebraic sense?
 
|type="[]"}
 
|type="[]"}
- die Menge&nbsp; $\mathcal{N}$&nbsp; der natürlichen Zahlen,
+
- the set&nbsp; $\mathcal{N}$&nbsp; of natural numbers,
- die Menge&nbsp; $\mathcal{Z}$&nbsp; der ganzen Zahlen,
+
- the set&nbsp; $\mathcal{Z}$&nbsp; of integers,
+ die Menge&nbsp; $\mathcal{Q}$&nbsp; der rationalen Zahlen,
+
+ the set&nbsp; $\mathcal{Q}$&nbsp; of rational numbers,
+ die Menge&nbsp; $\mathcal{R}$&nbsp; der reellen Zahlen,
+
+ the set&nbsp; $\mathcal{R}$&nbsp; of real numbers,
+ die Menge&nbsp; $\mathcal{C}$&nbsp; der komplexen Zahlen.
+
+ the set&nbsp; $\mathcal{C}$&nbsp; of complex numbers.
  
{Welche Körper sind Teilmenge (Unterraum) eines anderen Körpers?
+
{Which fields are subset (subspace) of another field?
 
|type="[]"}
 
|type="[]"}
 
+ $\mathcal{Q} &#8834; \mathcal{C}$,
 
+ $\mathcal{Q} &#8834; \mathcal{C}$,
Line 68: Line 77:
 
- ${\rm GF}(2^3) &#8834; {\rm GF}(2^2)$.
 
- ${\rm GF}(2^3) &#8834; {\rm GF}(2^2)$.
  
{Zwischen welchen Körpern bestehen gewisse Analogien?
+
{Which fields have certain analogies?
 
|type="[]"}
 
|type="[]"}
- Menge&nbsp; $\mathcal{Q}$&nbsp; der rationalen Zahlen und&nbsp; ${\rm GF}(2^2)$,
+
- Set&nbsp; $\mathcal{Q}$&nbsp; of rational numbers and&nbsp; ${\rm GF}(2^2)$,
+ Menge&nbsp; $\mathcal{C}$&nbsp; der komplexen Zahlen und&nbsp; ${\rm GF}(2^2)$,
+
+ set&nbsp; $\mathcal{C}$&nbsp; of complex numbers and&nbsp; ${\rm GF}(2^2)$,
- Menge&nbsp; $\mathcal{C}$&nbsp; der komplexen Zahlen und&nbsp; ${\rm GF}(2^3)$.
+
- set&nbsp; $\mathcal{C}$&nbsp; of complex numbers and&nbsp; ${\rm GF}(2^3)$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Im Angabenteil steht sinngemäß:  
+
'''(1)'''&nbsp; In the data section it says accordingly:
 
+
Ein Polynom vom Grad $m$ nennt man ''reduzibel'' im Körper $\mathcal{F}$, wenn es in der Form
+
A polynomial of degree&nbsp; $m$&nbsp; is called&nbsp; "reducible"&nbsp; in the field&nbsp; $\mathcal{F}$&nbsp; if it is can be represented the form
 
:$$p(x)= \prod_{i = 1}^m (x-x_i) = (x - x_1)  \cdot  (x - x_2) \cdot \hspace{0.05cm}\text{ ...}\hspace{0.05cm}  \cdot (x - x_m) $$
 
:$$p(x)= \prod_{i = 1}^m (x-x_i) = (x - x_1)  \cdot  (x - x_2) \cdot \hspace{0.05cm}\text{ ...}\hspace{0.05cm}  \cdot (x - x_m) $$
  
dargestellt werden kann und für alle Nullstellen $x_i &#8712; \mathcal{F}$ gilt. Ist dies nicht möglich, so spricht man von einem ''irreduziblen'' Polynom.
+
and this is valid for all zeros&nbsp; $x_i &#8712; \mathcal{F}$. &nbsp; If this is not possible,&nbsp; one speaks of an&nbsp; "irreducible"&nbsp; polynomial.
  
Im reellen Zahlenraum gilt für die jeweils&nbsp; $m = 2$&nbsp; Nullstellen&nbsp; $x_1$&nbsp; und&nbsp; $x_2$:
+
In real number space,&nbsp; it hold for the&nbsp; $m = 2$&nbsp; zeros&nbsp; $x_1$&nbsp; and&nbsp; $x_2$:
 
:$$p_1(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +{\rm j}\hspace{0.05cm},\hspace{0.2cm}x_2 = -{\rm j}\hspace{0.05cm},$$
 
:$$p_1(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +{\rm j}\hspace{0.05cm},\hspace{0.2cm}x_2 = -{\rm j}\hspace{0.05cm},$$
 
:$$p_2(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +1\hspace{0.05cm},\hspace{0.2cm}x_2 = -1\hspace{0.05cm},$$
 
:$$p_2(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +1\hspace{0.05cm},\hspace{0.2cm}x_2 = -1\hspace{0.05cm},$$
Line 90: Line 99:
 
:$$p_4(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +1\hspace{0.05cm},\hspace{0.2cm}x_2 = -2\hspace{0.05cm}.$$
 
:$$p_4(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +1\hspace{0.05cm},\hspace{0.2cm}x_2 = -2\hspace{0.05cm}.$$
  
Richtig sind somit die <u>Lösungsvorschläge 1 und 3</u>:
+
Thus the&nbsp; <u>proposed solutions 1 and 3</u>&nbsp; are correct:
*Die beiden Nullstellen von $p_2(x)$ und $p_4(x)$ sind jeweils reell. Somit handelt es sich hierbei mit Sicherheit um reduzible Polynome.  
+
*The two zeros of&nbsp; $p_2(x)$&nbsp; and&nbsp; $p_4(x)$&nbsp; are both real.&nbsp; Thus,&nbsp; these are certainly reducible polynomials.
*Die beiden anderen Polynome weisen dagegen keine reellen Nullstellen auf (vielmehr imaginäre bzw. komplexe) und sind nach obiger Definition irreduzibel im reellen Körper.  
+
 +
*The other two polynomials,&nbsp; on the other hand,&nbsp; have no real zeros&nbsp; (rather imaginary or complex ones)&nbsp; and they are irreducible in the real field according to the above definition.  
  
  
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:  
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>proposed solution 3</u>:
$p_3 = x^2 + x + 1$&nbsp; ist das einzige irreduzible Polynom im Galoisfeld &nbsp;$\rm GF(2^2)$. Im [[Channel_Coding/Erweiterungsk%C3%B6rper#GF.2822.29_.E2.80.93_Beispiel_eines_Erweiterungsk.C3.B6rpers|Theorieteil]] wurden hierfür die Additions&ndash; und die Multiplikationstabelle angegeben.  
+
 +
$p_3 = x^2 + x + 1$&nbsp; is the only irreducible polynomial in the Galois field &nbsp;$\rm GF(2^2)$.&nbsp; In the [[Channel_Coding/Extension_Field#GF.2822.29_.E2.80.93_Example_of_an_extension_field|"theory section"]]&nbsp; the additions and the multiplication table were given for this.  
  
Für die anderen Polynome gilt:
+
For the other polynomials holds:
* Das Polynom&nbsp; $p_1(x)$&nbsp; ist in&nbsp; ${\rm GF}(2) = \{0, \, 1\}$&nbsp; reduzibel, da dieses Polynom faktorisiert werden kann:
+
* The polynomial&nbsp; $p_1(x)$&nbsp; is reducible in&nbsp; ${\rm GF}(2) = \{0, \, 1\}$&nbsp; since this polynomial can be factorized:
 
:$$p_1(x) = x^2 + 1 = (x+1)^2\hspace{0.05cm}.$$
 
:$$p_1(x) = x^2 + 1 = (x+1)^2\hspace{0.05cm}.$$
* Da in&nbsp; $\rm GF(2)$&nbsp; kein Unterschied zwischen Summe und Differenz besteht, ist auch das Polynom&nbsp; $p_2(x) = x^2 - 1$&nbsp; reduzibel.
+
* Since in&nbsp; $\rm GF(2)$&nbsp; there is no difference between sum and difference,&nbsp; the polynomial&nbsp; $p_2(x) = x^2 - 1$&nbsp; is also reducible.
* Das Polynom&nbsp; $p_4(x) = x^2 + x - 2$ ist&nbsp; schon allein deshalb für&nbsp; $\rm GF(2)$&nbsp; ungeeignet, da nicht alle Polynomkoeffizienten $0$ oder $1$ sind.  
+
 
*Die "$2$" wäre nur im Galoisfeld $\rm GF(3)$ möglich.
+
*The polynomial&nbsp; $p_4(x) = x^2 + x - 2$&nbsp; is&nbsp; unsuitable for&nbsp; $\rm GF(2)$&nbsp; alone,&nbsp; since not all polynomial coefficients are&nbsp; $0$&nbsp; or&nbsp; $1$.&nbsp; The&nbsp; "$2$"&nbsp; would only be possible in the Galois field&nbsp; $\rm GF(3)$.
 +
 
 +
 
  
  
 +
'''(3)'''&nbsp; Correct are the&nbsp; <u>last three proposed solutions</u>:
 +
* The set&nbsp; $\mathcal{N}$&nbsp; is not a field,&nbsp; since already the subtraction is not allowed for all elements,&nbsp; for example&nbsp; $2 - 3 = -1 &#8713; \mathcal{N}$.
  
 +
* Also the set&nbsp; $\mathcal{Z}$&nbsp; of integers is not a field,&nbsp; since for example the equation&nbsp; $2 \cdot z = 1$&nbsp; is not to be satisfied for any&nbsp; $z &#8712; \mathcal{N}$.
  
'''(3)'''&nbsp; Richtig sind die <u>letzten drei Lösungsvorschläge</u>:
 
* Die Menge&nbsp; $\mathcal{N}$&nbsp; ist kein Körper, da schon die Subtraktion nicht für alle Elemente zulässig ist, zum Beispiel ist&nbsp; $2 - 3 = -1 &#8713; \mathcal{N}$.
 
* Auch die Menge&nbsp; $\mathcal{Z}$&nbsp; der ganzen Zahlen ist kein Körper, da beispielsweise die Gleichung&nbsp; $2 \cdot z = 1$&nbsp; für kein&nbsp; $z &#8712; \mathcal{N}$&nbsp; zu erfüllen ist.
 
  
  
  
 +
'''(4)'''&nbsp; Correct are&nbsp; <u>the answers 1 and 3</u>:
 +
* It is&nbsp; $\mathcal{Q} &#8834; \mathcal{R}$&nbsp; (rational numbers are a subset of real numbers)&nbsp; and&nbsp; $\mathcal{R} &#8834; \mathcal{C}$&nbsp; (real numbers are a subset of the complex numbers).
  
'''(4)'''&nbsp; Richtig sind die <u>Antworten 1 und 3</u>:
+
*Thus also&nbsp; $\mathcal{Q} &#8834; \mathcal{C}$.  
* Es gilt $\mathcal{Q} &#8834; \mathcal{R}$ (rationale Zahlen sind eine Untermenge der reellen Zahlen) und $\mathcal{R} &#8834; \mathcal{C}$ (reelle Zahlen sind eine Untermenge der komplexen Zahlen).
+
*For finite fields,&nbsp; ${\rm GF}(2^m) &#8834; {\rm GF}(2^M)$&nbsp; means that&nbsp; $m < M$&nbsp; must hold.
*Damit gilt auch $\mathcal{Q} &#8834; \mathcal{C}$.
 
*Bei den endlichen Körpern bedeutet ${\rm GF}(2^m) &#8834; {\rm GF}(2^M)$, dass $m < M$ gelten muss.
 
  
  
  
  
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(5)'''&nbsp; Correct is only the&nbsp; <u>proposed solution 2</u>:
* Die Menge&nbsp; $\mathcal{C}$&nbsp; der komplexen Zahlen ist eine Erweiterung der reellen Zahlen&nbsp; $(\mathcal{R})$&nbsp; in eine zweite Dimension. Hierfür kann geschrieben werden:
+
* The set&nbsp; $\mathcal{C}$&nbsp; of complex numbers is an extension of the real numbers&nbsp; $(\mathcal{R})$&nbsp; into a second dimension.&nbsp; For this can be written:
 
:$$\mathcal{C} = \{k_0 + {\rm j} \cdot k_1\hspace{0.05cm}| \hspace{0.05cm}k_0 \in {\mathcal{R}}, k_1 \in \mathcal{R}\}\hspace{0.05cm}.$$
 
:$$\mathcal{C} = \{k_0 + {\rm j} \cdot k_1\hspace{0.05cm}| \hspace{0.05cm}k_0 \in {\mathcal{R}}, k_1 \in \mathcal{R}\}\hspace{0.05cm}.$$
* $\rm GF(2^2)$&nbsp; ist eine Erweiterung des endlichen Körpers&nbsp; $\rm GF(2) = \{0, \, 1\}$&nbsp; in eine zweite Dimension:
+
* $\rm GF(2^2)$&nbsp; is an extension of the finite field&nbsp; $\rm GF(2) = \{0, \, 1\}$&nbsp; into a second dimension:
 
:$${\rm GF}(2^2) = \{k_0 + \alpha \cdot k_1\hspace{0.05cm}| \hspace{0.05cm}k_0 \in {\rm GF}(2), k_1 \in {\rm GF}(2)\}\hspace{0.05cm}.$$
 
:$${\rm GF}(2^2) = \{k_0 + \alpha \cdot k_1\hspace{0.05cm}| \hspace{0.05cm}k_0 \in {\rm GF}(2), k_1 \in {\rm GF}(2)\}\hspace{0.05cm}.$$
  
*Die imaginäre Einheit&nbsp; ${\rm j} &#8713; \mathcal{C}$&nbsp; ergibt sich als Lösung der Gleichung&nbsp; ${\rm j}^2 + 1 = 0$, während das neue Element von&nbsp; $\rm GF(2^2)$&nbsp; mit&nbsp; $\alpha &#8713; \rm GF(2)$&nbsp; bezeichnet wird und aus der Gleichung&nbsp; $\alpha^2 + \alpha + 1 = 0$&nbsp; folgt.
+
*The imaginary unit&nbsp; ${\rm j} &#8713; \mathcal{C}$&nbsp; results as the solution of the equation &nbsp; ${\rm j}^2 + 1 = 0$,&nbsp; while the new element of&nbsp; $\rm GF(2^2)$&nbsp; is denoted by&nbsp; $\alpha &#8713; \rm GF(2)$&nbsp; and follows from the equation &nbsp; $\alpha^2 + \alpha + 1 = 0$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:25, 3 October 2022

Some pioneers of mathematics

In mathematics,  different sets of numbers are distinguished:

  • the set of natural numbers:  $\mathcal{N} = \{0, \, 1, \, 2, \hspace{0.05cm}\text{ ...} \}$,
  • the set of integers:  $\mathcal{Z} = \{\text{ ...}, \, -1, \, 0, \, +1, \hspace{0.05cm}\text{ ...} \}$,
  • the set of rational numbers:  $\mathcal{Q} = \{m/n\}$   with   $m ∈ \mathcal{Z}, \ n ∈ \mathcal{Z} \, \backslash \, \{0\}$,
  • the set  $\mathcal{R}$  of real numbers,
  • the set of complex numbers:  $\mathcal{C}= \{a + {\rm j} \cdot b\}$  with   $a ∈ \mathcal{R}, \ b ∈ \mathcal{R}$  and the imaginary unit  "$\rm j$".


Such a set is called a  "field"  in the algebraic sense if  (and only if)  the four arithmetic operations addition, subtraction, multiplication and division are allowed in it and the results are representable in the same field.

Some related definitions can be found in the  "theory section".  So much up front:  Not all of the sets listed here are fields.

Besides,  there are also  "finite fields",  which in our learning tutorial are also called  "Galois field"  ${\rm GF}(P^m)$  where

  • $P ∈ \mathcal{P}$  denotes a prime number, and
  • $m ∈ \mathcal{N}$  denotes a natural number.


If the exponent  $m \ge 2$,  it is called an  "extension field".  In this exercise we restrict ourselves to extension fields to the base  $P = 2$.

The first two subtasks are related to the classification of polynomials.

  • A degree-m polynomial is called  "reducible"  in the field  $\mathcal{F}$  if it is representable in the form
$$p(x)= \prod_{i = 1}^m (x-x_i) = (x - x_1) \cdot (x - x_2) \cdot \hspace{0.05cm}\text{ ...}\hspace{0.05cm} \cdot (x - x_m) $$

and holds for all zeros  $x_i ∈ \mathcal{F}$.

  • If this is not possible,  one speaks of an  "irreducible polynomial".



Hints:

  • Above you can see illustrations of the Italian mathematicians  Gerolamo Cardano  and  Rafael Bombelli, who first introduced imaginary numbers to solve algebraic equations, and of  Évariste Galois, who established the foundations of finite fields at a very young age.


Questions

1

Which polynomials are irreducible in the real field  $\mathcal{R}$?

$p_1(x) = x^2 + 1$.
$p_2(x) = x^2 - 1$,
$p_3(x) = x^2 + x + 1$,
$p_4(x) = x^2 + x - 2$.

2

Which polynomials are irreducible in  $\rm GF(2)$?

$p_1(x) = x^2 + 1$,
$p_2(x) = x^2 - 1$,
$p_3(x) = x^2 + x + 1$,
$p_4(x) = x^2 + x - 2$.

3

Which sets are fields in the algebraic sense?

the set  $\mathcal{N}$  of natural numbers,
the set  $\mathcal{Z}$  of integers,
the set  $\mathcal{Q}$  of rational numbers,
the set  $\mathcal{R}$  of real numbers,
the set  $\mathcal{C}$  of complex numbers.

4

Which fields are subset (subspace) of another field?

$\mathcal{Q} ⊂ \mathcal{C}$,
$\mathcal{C} ⊂ \mathcal{R}$,
${\rm GF}(2) ⊂ {\rm GF}(2^2)$,
${\rm GF}(2^3) ⊂ {\rm GF}(2^2)$.

5

Which fields have certain analogies?

Set  $\mathcal{Q}$  of rational numbers and  ${\rm GF}(2^2)$,
set  $\mathcal{C}$  of complex numbers and  ${\rm GF}(2^2)$,
set  $\mathcal{C}$  of complex numbers and  ${\rm GF}(2^3)$.


Solution

(1)  In the data section it says accordingly:

A polynomial of degree  $m$  is called  "reducible"  in the field  $\mathcal{F}$  if it is can be represented the form

$$p(x)= \prod_{i = 1}^m (x-x_i) = (x - x_1) \cdot (x - x_2) \cdot \hspace{0.05cm}\text{ ...}\hspace{0.05cm} \cdot (x - x_m) $$

and this is valid for all zeros  $x_i ∈ \mathcal{F}$.   If this is not possible,  one speaks of an  "irreducible"  polynomial.

In real number space,  it hold for the  $m = 2$  zeros  $x_1$  and  $x_2$:

$$p_1(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +{\rm j}\hspace{0.05cm},\hspace{0.2cm}x_2 = -{\rm j}\hspace{0.05cm},$$
$$p_2(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +1\hspace{0.05cm},\hspace{0.2cm}x_2 = -1\hspace{0.05cm},$$
$$p_3(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} -0.5 + {\rm j} \cdot \sqrt{3}/2 \hspace{0.05cm},\hspace{0.2cm}x_2 = -0.5 - {\rm j} \cdot \sqrt{3}/2\hspace{0.05cm},$$
$$p_4(x) \text{:}\hspace{0.3cm}x_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} +1\hspace{0.05cm},\hspace{0.2cm}x_2 = -2\hspace{0.05cm}.$$

Thus the  proposed solutions 1 and 3  are correct:

  • The two zeros of  $p_2(x)$  and  $p_4(x)$  are both real.  Thus,  these are certainly reducible polynomials.
  • The other two polynomials,  on the other hand,  have no real zeros  (rather imaginary or complex ones)  and they are irreducible in the real field according to the above definition.



(2)  Correct is the  proposed solution 3:

$p_3 = x^2 + x + 1$  is the only irreducible polynomial in the Galois field  $\rm GF(2^2)$.  In the "theory section"  the additions and the multiplication table were given for this.

For the other polynomials holds:

  • The polynomial  $p_1(x)$  is reducible in  ${\rm GF}(2) = \{0, \, 1\}$  since this polynomial can be factorized:
$$p_1(x) = x^2 + 1 = (x+1)^2\hspace{0.05cm}.$$
  • Since in  $\rm GF(2)$  there is no difference between sum and difference,  the polynomial  $p_2(x) = x^2 - 1$  is also reducible.
  • The polynomial  $p_4(x) = x^2 + x - 2$  is  unsuitable for  $\rm GF(2)$  alone,  since not all polynomial coefficients are  $0$  or  $1$.  The  "$2$"  would only be possible in the Galois field  $\rm GF(3)$.



(3)  Correct are the  last three proposed solutions:

  • The set  $\mathcal{N}$  is not a field,  since already the subtraction is not allowed for all elements,  for example  $2 - 3 = -1 ∉ \mathcal{N}$.
  • Also the set  $\mathcal{Z}$  of integers is not a field,  since for example the equation  $2 \cdot z = 1$  is not to be satisfied for any  $z ∈ \mathcal{N}$.



(4)  Correct are  the answers 1 and 3:

  • It is  $\mathcal{Q} ⊂ \mathcal{R}$  (rational numbers are a subset of real numbers)  and  $\mathcal{R} ⊂ \mathcal{C}$  (real numbers are a subset of the complex numbers).
  • Thus also  $\mathcal{Q} ⊂ \mathcal{C}$.
  • For finite fields,  ${\rm GF}(2^m) ⊂ {\rm GF}(2^M)$  means that  $m < M$  must hold.



(5)  Correct is only the  proposed solution 2:

  • The set  $\mathcal{C}$  of complex numbers is an extension of the real numbers  $(\mathcal{R})$  into a second dimension.  For this can be written:
$$\mathcal{C} = \{k_0 + {\rm j} \cdot k_1\hspace{0.05cm}| \hspace{0.05cm}k_0 \in {\mathcal{R}}, k_1 \in \mathcal{R}\}\hspace{0.05cm}.$$
  • $\rm GF(2^2)$  is an extension of the finite field  $\rm GF(2) = \{0, \, 1\}$  into a second dimension:
$${\rm GF}(2^2) = \{k_0 + \alpha \cdot k_1\hspace{0.05cm}| \hspace{0.05cm}k_0 \in {\rm GF}(2), k_1 \in {\rm GF}(2)\}\hspace{0.05cm}.$$
  • The imaginary unit  ${\rm j} ∉ \mathcal{C}$  results as the solution of the equation   ${\rm j}^2 + 1 = 0$,  while the new element of  $\rm GF(2^2)$  is denoted by  $\alpha ∉ \rm GF(2)$  and follows from the equation   $\alpha^2 + \alpha + 1 = 0$.