Difference between revisions of "Aufgaben:Exercise 2.09: Reed–Solomon Parameters"

From LNTwww
Line 2: Line 2:
  
 
[[File:P_ID2523__KC_A_2_9_neu.png|right|frame|Some Reed-Solomon codes]]
 
[[File:P_ID2523__KC_A_2_9_neu.png|right|frame|Some Reed-Solomon codes]]
Adjacent is an incomplete list of possible Reed–Solomon codes known to be based on a Galois field  ${\rm GF}(q) = {\rm GF}(2^m)$ . The parameter  $m$  specifies with how many bits a RS code symbol is represented. It is valid:
+
Adjacent is an incomplete list of possible Reed–Solomon codes known to be based on a Galois field  ${\rm GF}(q) = {\rm GF}(2^m)$.   
 +
 
 +
The parameter  $m$  specifies with how many bits a Reed–Solomon code symbol is represented.  It is valid:
 
* $m = 4$  (red font),
 
* $m = 4$  (red font),
 +
 
* $m = 5$  (blue font),
 
* $m = 5$  (blue font),
 +
 
* $m = 6$  (green font).
 
* $m = 6$  (green font).
  
  
 
A Reed–Solomon code is generally denoted as follows:   ${\rm RSC}\ (n, \ k, \ d_{\rm min})_q$.
 
A Reed–Solomon code is generally denoted as follows:   ${\rm RSC}\ (n, \ k, \ d_{\rm min})_q$.
 
  
 
The parameters have the following meaning:
 
The parameters have the following meaning:
* $n$&nbsp; specifies the number of symbols of a codeword&nbsp; $\underline{c}$&nbsp; &nbsp; &#8658; &nbsp; <b>length</b> of the code,
+
# The parameter&nbsp; $n$&nbsp; specifies the number of symbols of a code word&nbsp; $\underline{c}$&nbsp; &nbsp; &#8658; &nbsp; <b>length</b> of the code.
* $k$&nbsp; specifies the number of symbols of an information block&nbsp; $\underline{u}$&nbsp; &nbsp; &#8658; &nbsp; <b>dimension</b> of the code,
+
# Tthe parameter&nbsp; $k$&nbsp; specifies the number of symbols of an information block&nbsp; $\underline{u}$&nbsp; &nbsp; &#8658; &nbsp; <b>dimension</b>&nbsp; of the code.
* $d_{\rm min}$&nbsp; denotes the&nbsp; <b> minimum distance </b>&nbsp; between two codewords <br>$($for all Reed&ndash;Solomon codes equal&nbsp; $n-k+1)$,
+
# The parameter&nbsp; $d_{\rm min}$&nbsp; denotes the&nbsp; <b> minimum distance </b>&nbsp; between two code words <br>$($for all Reed&ndash;Solomon codes equal&nbsp; $n-k+1)$.
* $q$&nbsp; gives an indication of the use of the Galois field&nbsp; ${\rm GF}(q)$.
+
# The parameter&nbsp; $q$&nbsp; gives an indication of the use of the Galois field&nbsp; ${\rm GF}(q)$.
 
 
 
 
To the right is the binary representation of the same code:
 
*In this realization of a RS code, each information and code symbol is represented by&nbsp; $m$&nbsp; bits.
 
*For example, it can be seen from the first row that the minimum distance in terms of bits is also&nbsp; $d_{\rm min} = 5$&nbsp; if in&nbsp; ${\rm GF}(2^m)$&nbsp; the minimum distance is&nbsp; $d_{\rm min} = 5$&nbsp;.
 
*This can correct up to&nbsp; $t = 2$&nbsp; bit errors (or symbol errors) and detect up to&nbsp; $e = 4$&nbsp; bit errors (or symbol errors).
 
  
  
 +
To the right,&nbsp; there is the binary representation of the same code:
 +
# In this realization of a Reed&ndash;Solomon code,&nbsp; each information and code symbol is represented by&nbsp; $m$&nbsp; bits.
 +
# For example,&nbsp; it can be seen from the first row that the minimum distance in terms of bits is also&nbsp; $d_{\rm min} = 5$&nbsp; if in&nbsp; ${\rm GF}(2^m)$&nbsp; the minimum distance is&nbsp; $d_{\rm min} = 5$.
 +
# This code can correct up to &nbsp; $t = 2$ &nbsp; bit errors&nbsp; $($or symbol errors$)$&nbsp; and detect up to &nbsp; $e = 4$ &nbsp; bit errors&nbsp; $($or symbol errors$)$.
  
  
Line 31: Line 32:
 
Hints:
 
Hints:
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
* However, reference is also made to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension Field"]].
+
 
 +
* However,&nbsp; reference is also made to the chapter&nbsp; [[Channel_Coding/Extension_Field| "Extension Field"]].
 
   
 
   
  
Line 38: Line 40:
 
===Solution===
 
===Solution===
 
<quiz display=simple>
 
<quiz display=simple>
{It is valid&nbsp; $c_i &#8712; {\rm GF}(2^m)$. Which RS code parameters&nbsp; $n$&nbsp; result?
+
{It holds&nbsp; $c_i &#8712; {\rm GF}(2^m)$.&nbsp; Which Reed-Solomon code parameters&nbsp; $n$&nbsp; result?
 
|type="{}"}
 
|type="{}"}
 
$m = 4 \text{:} \hspace{0.4cm} n \ = \ ${ 15 }
 
$m = 4 \text{:} \hspace{0.4cm} n \ = \ ${ 15 }
Line 44: Line 46:
 
$m = 6 \text{:} \hspace{0.4cm} n \ = \ ${ 63 }
 
$m = 6 \text{:} \hspace{0.4cm} n \ = \ ${ 63 }
  
{Two specific RS codes&nbsp; ${\rm RSC} \ 1 \ (m = 4, \ t = 4)$&nbsp; and&nbsp; ${\rm RSC} \ 2 \ (m = 5, \ t = 8)$&nbsp; are considered below. <br>Which RS parameter&nbsp; $k$&nbsp; can be used to correct exactly&nbsp; $t$&nbsp; symbol errors?
+
{Two specific Reed-Solomon codes &nbsp; ${\rm RSC} \ 1 \ (m = 4, \ t = 4)$ &nbsp; and &nbsp; ${\rm RSC} \ 2 \ (m = 5, \ t = 8)$ &nbsp; are considered below. <br>Which parameter&nbsp; $k$&nbsp; can be used to correct exactly&nbsp; $t$&nbsp; symbol errors?
 
|type="{}"}
 
|type="{}"}
 
${\rm RSC} \ 1 \text{:} \hspace{0.4cm} k \ = \ ${ 7 }
 
${\rm RSC} \ 1 \text{:} \hspace{0.4cm} k \ = \ ${ 7 }
 
${\rm RSC} \ 2 \text{:} \hspace{0.4cm} k \ = \ ${ 15 }
 
${\rm RSC} \ 2 \text{:} \hspace{0.4cm} k \ = \ ${ 15 }
  
{Which designations are correct for&nbsp; $\rm RSC \ 1$&nbsp; and&nbsp; $\rm RSC \ 2$&nbsp; respectively?
+
{Which designations are correct for &nbsp; $\rm RSC \ 1$ &nbsp; resp. &nbsp; $\rm RSC \ 2$?
 
|type="[]"}
 
|type="[]"}
+ $\rm RSC \ 1$&nbsp; nennt man auch&nbsp; $\rm RSC \, (15, \, 7, \, 9)_{16}$.
+
+ $\rm RSC \ 1$&nbsp; is also called&nbsp; $\rm RSC \, (15, \, 7, \, 9)_{16}$.
- $\rm RSC \ 1$&nbsp; nennt man auch&nbsp; $\rm RSC \, (15, \, 7, \, 4)_4$.
+
- $\rm RSC \ 1$&nbsp; is also called&nbsp; $\rm RSC \, (15, \, 7, \, 4)_4$.
- $\rm RSC \ 2$&nbsp; nennt man auch&nbsp; $\rm RSC \, (31, \, 17, \, 15)_{32}$.
+
- $\rm RSC \ 2$&nbsp; is also called&nbsp; $\rm RSC \, (31, \, 17, \, 15)_{32}$.
+ $\rm RSC \ 2$&nbsp; nennt man auch&nbsp; $\rm  RSC \, (31, \, 15, \, 17)_{32}$.
+
+ $\rm RSC \ 2$&nbsp; is also called&nbsp; $\rm  RSC \, (31, \, 15, \, 17)_{32}$.
  
 
{How many symbol errors&nbsp; $(e)$&nbsp; can be detected at most?  
 
{How many symbol errors&nbsp; $(e)$&nbsp; can be detected at most?  
Line 63: Line 65:
 
{What are the codes under consideration in binary notation?
 
{What are the codes under consideration in binary notation?
 
|type="[]"}
 
|type="[]"}
- $\rm RSC \ 1$&nbsp; corresponds to code&nbsp; $\rm RSC \, (60, \, 28, \, 36)_2$.
+
- $\rm RSC \ 1$&nbsp; corresponds to the code&nbsp; $\rm RSC \, (60, \, 28, \, 36)_2$.
+ $\rm RSC \ 1$&nbsp; corresponds to code&nbsp; $\rm RSC \, (60, \, 28, \, 9)_2$.
+
+ $\rm RSC \ 1$&nbsp; corresponds to the code&nbsp; $\rm RSC \, (60, \, 28, \, 9)_2$.
+ $\rm RSC \ 2$&nbsp; corresponds to code&nbsp; $\rm RSC \, (155, \, 75, \, 17)_2$.
+
+ $\rm RSC \ 2$&nbsp; corresponds to the code&nbsp; $\rm RSC \, (155, \, 75, \, 17)_2$.
- $\rm RSC \ 2$&nbsp; corresponds to code&nbsp; $\rm RSC \, (124, \, 60, \, 17)_2$.
+
- $\rm RSC \ 2$&nbsp; corresponds to the code&nbsp; $\rm RSC \, (124, \, 60, \, 17)_2$.
 
</quiz>
 
</quiz>
  

Revision as of 16:17, 10 October 2022

Some Reed-Solomon codes

Adjacent is an incomplete list of possible Reed–Solomon codes known to be based on a Galois field  ${\rm GF}(q) = {\rm GF}(2^m)$. 

The parameter  $m$  specifies with how many bits a Reed–Solomon code symbol is represented.  It is valid:

  • $m = 4$  (red font),
  • $m = 5$  (blue font),
  • $m = 6$  (green font).


A Reed–Solomon code is generally denoted as follows:   ${\rm RSC}\ (n, \ k, \ d_{\rm min})_q$.

The parameters have the following meaning:

  1. The parameter  $n$  specifies the number of symbols of a code word  $\underline{c}$    ⇒   length of the code.
  2. Tthe parameter  $k$  specifies the number of symbols of an information block  $\underline{u}$    ⇒   dimension  of the code.
  3. The parameter  $d_{\rm min}$  denotes the  minimum distance   between two code words
    $($for all Reed–Solomon codes equal  $n-k+1)$.
  4. The parameter  $q$  gives an indication of the use of the Galois field  ${\rm GF}(q)$.


To the right,  there is the binary representation of the same code:

  1. In this realization of a Reed–Solomon code,  each information and code symbol is represented by  $m$  bits.
  2. For example,  it can be seen from the first row that the minimum distance in terms of bits is also  $d_{\rm min} = 5$  if in  ${\rm GF}(2^m)$  the minimum distance is  $d_{\rm min} = 5$.
  3. This code can correct up to   $t = 2$   bit errors  $($or symbol errors$)$  and detect up to   $e = 4$   bit errors  $($or symbol errors$)$.



Hints:



Solution

1

It holds  $c_i ∈ {\rm GF}(2^m)$.  Which Reed-Solomon code parameters  $n$  result?

$m = 4 \text{:} \hspace{0.4cm} n \ = \ $

$m = 5 \text{:} \hspace{0.4cm} n \ = \ $

$m = 6 \text{:} \hspace{0.4cm} n \ = \ $

2

Two specific Reed-Solomon codes   ${\rm RSC} \ 1 \ (m = 4, \ t = 4)$   and   ${\rm RSC} \ 2 \ (m = 5, \ t = 8)$   are considered below.
Which parameter  $k$  can be used to correct exactly  $t$  symbol errors?

${\rm RSC} \ 1 \text{:} \hspace{0.4cm} k \ = \ $

${\rm RSC} \ 2 \text{:} \hspace{0.4cm} k \ = \ $

3

Which designations are correct for   $\rm RSC \ 1$   resp.   $\rm RSC \ 2$?

$\rm RSC \ 1$  is also called  $\rm RSC \, (15, \, 7, \, 9)_{16}$.
$\rm RSC \ 1$  is also called  $\rm RSC \, (15, \, 7, \, 4)_4$.
$\rm RSC \ 2$  is also called  $\rm RSC \, (31, \, 17, \, 15)_{32}$.
$\rm RSC \ 2$  is also called  $\rm RSC \, (31, \, 15, \, 17)_{32}$.

4

How many symbol errors  $(e)$  can be detected at most?

${\rm RSC} \ 1 \text{:} \hspace{0.4cm} e \ = \ $

${\rm RSC} \ 2 \text{:} \hspace{0.4cm}e \ = \ $

5

What are the codes under consideration in binary notation?

$\rm RSC \ 1$  corresponds to the code  $\rm RSC \, (60, \, 28, \, 36)_2$.
$\rm RSC \ 1$  corresponds to the code  $\rm RSC \, (60, \, 28, \, 9)_2$.
$\rm RSC \ 2$  corresponds to the code  $\rm RSC \, (155, \, 75, \, 17)_2$.
$\rm RSC \ 2$  corresponds to the code  $\rm RSC \, (124, \, 60, \, 17)_2$.


Solution

(1)  For the code length of Reed–Solomon codes, the following applies in general.

$$n = q -1 = 2^m -1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 4 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 15} \hspace{0.05cm}, \hspace{0.4cm}m = 5 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 31} \hspace{0.05cm},\hspace{0.4cm} m = 6 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 63} \hspace{0.05cm}. $$


(2)  To be able to correct $t$ symbol errors, the minimum distance must be $d_{\rm min} = 2t + 1$.

  • The Reed–Solomon code is a so-called MDS code (Maximum Distance Separable).
  • For this applies:
$$d_{\rm min} = n-k+1 = 2t+1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}k = n -2t = 2^m - ( 2t+1) \hspace{0.05cm}. $$
  • This gives for the
  • $\rm RSC \ 1$ (mit $m = 4, \ t = 4) \text{:} \hspace{0.2cm} k = 2^4 - (2 \cdot 4 + 1) \ \underline{= 7}$,
  • $\rm RSC \ 2$ (mit $m = 5, \ t = 8) \text{:} \hspace{0.2cm} k = 2^5 - (2 \cdot 8 + 1) \ \underline{= 15}$.


(3)  The denotation of a Reed–Solomon code is ${\rm RSC} \, (n, \, k, \, d_{\rm min})_q$ with $q = 2^m = n + 1$.

Correct are the solutions 1 and 4:

  • $\rm RSC \ 1 \Rightarrow RSC \, (15, \, 7, \, 9)_{16}$,
  • $\rm RSC \ 2 \Rightarrow RSC \, (31, \, 15, \, 17)_{32}$.


(4)  If $d_{\rm min}$ denotes the minimum distance of a block code, it can be used to detect $e = d_{\rm min} - 1$ symbol errors and correct $t = e/2$ symbol errors:

  • ${\rm RSC} \ 1 \text{:} \hspace{0.2cm} d_{\rm min} = \ \ 9, \ t = 4, \ \underline{e = 8}$,
  • ${\rm RSC} \ 2 \text{:} \hspace{0.2cm} d_{\rm min} = 17, \ t = 8, \ \underline{e = 16}$.


(5)  Correct are the two middle solutions 2 and 3:

  • For ${\rm RSC} \ 1 \, (m = 4)$, $n = 15$ code symbols from $\rm GF(2^5)$ equal $60$ bits and $k = 7$ information symbols equal exactly $28$ bits:
  • $\rm RSC \ 1 \Rightarrow RSC \, (15, \, 7, \, 9)_{16} \Rightarrow RSC \, (60, \, 28, \, 9)_2$,
  • $\rm RSC \ 2 \Rightarrow RSC \, (31, \, 15, \, 17)_{32} \Rightarrow RSC \, (155, \, 75, \, 17)_2$.
  • For the minimum distance on bit level   ⇒   $\rm GF(2)$, $d_{\rm min} = 9$ resp. $d_{\rm min} = 17$ result in the same values as on symbol level  
    ⇒   $\rm GF(2^4)$ resp. $\rm GF(2^5)$ (see "theory section").