Difference between revisions of "Aufgaben:Exercise 3.10: Metric Calculation"

From LNTwww
Line 44: Line 44:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Fehlergrößen für den Zeitpunkt&nbsp; $i = 5$?
+
{What are the branch metrics for time&nbsp; $i = 5$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Gamma}_5(S_0) \ = \ ${ 3 3% }
 
${\it \Gamma}_5(S_0) \ = \ ${ 3 3% }
Line 51: Line 51:
 
${\it \Gamma}_5(S_3) \ = \ ${ 3 3% }
 
${\it \Gamma}_5(S_3) \ = \ ${ 3 3% }
  
{Wie lauten die Fehlergrößen für den Zeitpunkt&nbsp; $i = 6$?
+
{What are the branch metrics for time&nbsp; $i = 6$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Gamma}_6(S_0) \ = \ ${ 3 3% }
 
${\it \Gamma}_6(S_0) \ = \ ${ 3 3% }
 
${\it \Gamma}_6(S_2) \ = \ ${ 3 3% }
 
${\it \Gamma}_6(S_2) \ = \ ${ 3 3% }
  
{Welcher Endwert ergibt sich bei diesem Trellis, basierend auf&nbsp; ${\it \Gamma}_i(S_{\mu})$?
+
{What is the final value of this trellis based on&nbsp; ${\it \Gamma}_i(S_{\mu})$?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; ${\it \Gamma}_7(S_0) = 3$.
+
+ It holds&nbsp; ${\it \Gamma}_7(S_0) = 3$.
- Dieser Endwert lässt auf eine fehlerfreie Übertragung schließen.
+
- This final value suggests one error-free transmission.
+ Dieser Endwert lässt auf drei Übertragungsfehler schließen.
+
+ This final value suggests three transmission errors.
  
{Welche Aussagen sind für die&nbsp; ${\it \Lambda}_i(S_{\mu})$&ndash;Auswertung zutreffend?
+
{Which statements are true for the&nbsp; ${\it \Lambda}_i(S_{\mu})$ evaluation?
 
|type="[]"}
 
|type="[]"}
+ Die Metriken&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; liefern gleiche Informationen wie&nbsp; ${\it \Gamma}_i(S_{\mu})$.
+
+ The metrics&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; provide the same information as&nbsp; ${\it \Gamma}_i(S_{\mu})$.
+ Für alle Knoten gilt&nbsp; ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, &ndash;{\it \Gamma}_i(S_{\mu})\big ]$.
+
+ For all nodes,&nbsp; ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, &ndash;{\it \Gamma}_i(S_{\mu})\big ]$.
- Für die Metrikzuwächse gilt&nbsp; $&#9001; \underline{x}_i', \, \underline{y}_i &#9002; &#8712; \{0, \, 1, \, 2\}$.
+
- For the metric increments,&nbsp; $&#9001; \underline{x}_i', \, \underline{y}_i &#9002; &#8712; \{0, \, 1, \, 2\}$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Bei allen Knoten $S_{\mu}$ muss eine Entscheidung zwischen den beiden ankommenden Zweigen getroffen werden. Ausgewählt wird dann jeweils der Zweig, der zur (minimalen) Fehlergröße ${\it \Gamma}_5(S_{\mu})$ geführt hat. Mit $\underline{y}_5 = (01)$ erhält man:
+
'''(1)'''&nbsp; At all nodes $S_{\mu}$ a decision must be made between the two incoming branches. The branch that led to the (minimum) error metric ${\it \Gamma}_5(S_{\mu})$ is then selected in each case. With $\underline{y}_5 = (01)$ one obtains:
 
:$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
Line 77: Line 77:
 
:$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
 
:$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
Die linke Grafik zeigt das endgültig ausgewertete ${\it \Gamma}_i(S_{\mu})$&ndash;Trellis.
+
The left graph shows the final evaluated ${\it \Gamma}_i(S_{\mu})$ trellis.
  
[[File:P_ID2682__KC_A_3_10c_neu.png|center|frame|Ausgewertete Trellisdiagramme]]
+
[[File:P_ID2682__KC_A_3_10c_neu.png|center|frame|Evaluated trellis diagrams]]
  
  
'''(2)'''&nbsp; Zum Zeitpunk $i = 6$ ist bereits die Terminierung wirksam und es gibt nur noch zwei Fehlergrößen. Für diese erhält man mit $\underline{y}_6 = (01)$:
+
'''(2)'''&nbsp; At time $i = 6$ the termination is already effective and there are only two branch metrics left. For these one obtains with $\underline{y}_6 = (01)$:
 
:$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
 
:$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Der Endwert ergibt sich zu
+
'''(3)'''&nbsp; The final value results to
 
:$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
 
:$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
Beim BSC&ndash;Modell kann man aus ${\it \Gamma}_7(S_{\mu}) = 3$ darauf schließen, dass drei Übertragungsfehler aufgetreten sind &nbsp; &#8658; &nbsp; <u>Lösungsvorschläge 1 und 3</u>.
+
In the BSC model, one can infer from ${\it \Gamma}_7(S_{\mu}) = 3$ that three transmission errors occurred &nbsp; &#8658; &nbsp; <u>solutions 1 and 3</u>.
  
  
'''(4)'''&nbsp; Richtig sind die <u>Aussagen 1 und 2</u>:  
+
'''(4)'''&nbsp; Correct are <u>statements 1 and 2</u>:  
*Die Maximierung der Metriken ${\it \Lambda}_i(S_{\mu})$ entsprechend der rechten Skizze in obiger Grafik liefert das gleiche Ergebnis wie die links dargestellte Minimierung der Fehlergrößen ${\it \Gamma}_i(S_{\mu})$. Auch die überlebenden und gestrichenen Zweige sind in beiden Grafiken identisch.
+
*Maximizing the branch metrics ${\it \Lambda}_i(S_{\mu})$ according to the right sketch in the above graph gives the same result as minimizing the branch metrics ${\it \Gamma}_i(S_{\mu})$ shown on the left. Also, the surviving and deleted branches are identical in both graphs.
*Die angegebene Gleichung ist ebenfalls richtig, was hier nur am Beispiel $i = 7$ gezeigt wird:
+
*The given equation is also correct, which is shown here only on the example $i = 7$:
 
:$${\it \Lambda}_7(S_0)) =  2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
 
:$${\it \Lambda}_7(S_0)) =  2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
*Die letzte Aussage ist falsch. Vielmehr gilt&nbsp; $&#9001;x_i', \, y_i&#9002; &#8712; \{&ndash;2, \, 0, \, +2\}$.  
+
*The last statement is false. Rather applies&nbsp; $&#9001;x_i', \, y_i&#9002; &#8712; \{&ndash;2, \, 0, \, +2\}$.  
  
  
''Hinweis:'' In der [[Aufgaben:Aufgabe_3.11:_Viterbi–Pfadsuche| Aufgabe 3.11]] wird für das gleiche Beispiel die Pfadsuche demonstiert, wobei von den ${\it \Lambda}_i(S_{\mu})$&ndash;Metriken gemäß der rechten Grafik ausgegangen wird.
+
Hints: In [[Aufgaben:Exercise_3.11:_Viterbi_Path_Finding| "Exercise 3.11"]], path finding is demonstrable for the same example, assuming ${\it \Lambda}_i(S_{\mu})$&ndash;metrics as shown in the right graph.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 20:54, 18 October 2022

Only partially evaluated trellis

In the  "theory section"  of this chapter, the calculation of the branch metrics  ${\it \Gamma}_i(S_{\mu})$  has been discussed in detail, based on the Hamming distance  $d_{\rm H}(\underline{x}\hspace{0.05cm}', \ \underline{y}_i)$  between the possible codewords  $\underline{x}\hspace{0.05cm}' ∈ \{00, \, 01, \, 10, \, 11\}$  and the 2–bit–words  $\underline{y}_i$  received at time  $i$  is based.

The exercise deals exactly with this topic. In the adjacent graph

  • the considered trellis is shown– valid for the code with rate  $R = 1/2$,  memory  $m = 2$  and  $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
  • are the received words  $\underline{y}_1 = (01), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \underline{y}_7 = (11)$  indicated in the rectangles,
  • are all branch metrics  ${\it \Gamma}_0(S_{\mu}), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ {\it \Gamma}_4(S_{\mu})$  already entered.


For example, the branch metric  ${\it \Gamma}_4(S_0)$  with  $\underline{y}_4 = (01)$  as the minimum of the two comparison values

  • ${\it \Gamma}_3(S_0) + d_{\rm H}((00), \ (01)) = 3 + 1 = 4$, and
  • ${\it \Gamma}_3(S_2) + d_{\rm H}((11), \ (01)) = 2 + 1 = 3$.


The surviving branch – here from  ${\it \Gamma}_3(S_2)$  to  ${\it \Gamma}_4(S_0)$  – is drawn solid, the eliminated branch from  ${\it \Gamma}_3(S_0)$  to  ${\it \Gamma}_4(S_0)$  dotted. Red arrows represent the information bit $u_i = 0$, blue arrows $u_i = 1$.

In the subtask (4) the relationship between

  • the  ${\it \Gamma}_i(S_{\mu})$ minimization and
  • the  ${\it \Lambda}_i(S_{\mu})$ maximization.


shall be worked out. Here, we refer to the nodes  ${\it \Lambda}_i(S_{\mu})$  as metrics, where the metric increment over the predecessor nodes results from the correlation value  $〈\underline{x}_i\hspace{0.05cm}', \, \underline{y}_i 〉$ . For more details on this topic, see the following theory pages:





Hints:



Questions

1

What are the branch metrics for time  $i = 5$?

${\it \Gamma}_5(S_0) \ = \ $

${\it \Gamma}_5(S_1) \ = \ $

${\it \Gamma}_5(S_2) \ = \ $

${\it \Gamma}_5(S_3) \ = \ $

2

What are the branch metrics for time  $i = 6$?

${\it \Gamma}_6(S_0) \ = \ $

${\it \Gamma}_6(S_2) \ = \ $

3

What is the final value of this trellis based on  ${\it \Gamma}_i(S_{\mu})$?

It holds  ${\it \Gamma}_7(S_0) = 3$.
This final value suggests one error-free transmission.
This final value suggests three transmission errors.

4

Which statements are true for the  ${\it \Lambda}_i(S_{\mu})$ evaluation?

The metrics  ${\it \Lambda}_i(S_{\mu})$  provide the same information as  ${\it \Gamma}_i(S_{\mu})$.
For all nodes,  ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, –{\it \Gamma}_i(S_{\mu})\big ]$.
For the metric increments,  $〈 \underline{x}_i', \, \underline{y}_i 〉 ∈ \{0, \, 1, \, 2\}$.


Solution

(1)  At all nodes $S_{\mu}$ a decision must be made between the two incoming branches. The branch that led to the (minimum) error metric ${\it \Gamma}_5(S_{\mu})$ is then selected in each case. With $\underline{y}_5 = (01)$ one obtains:

$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] = {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

The left graph shows the final evaluated ${\it \Gamma}_i(S_{\mu})$ trellis.

Evaluated trellis diagrams


(2)  At time $i = 6$ the termination is already effective and there are only two branch metrics left. For these one obtains with $\underline{y}_6 = (01)$:

$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$


(3)  The final value results to

$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

In the BSC model, one can infer from ${\it \Gamma}_7(S_{\mu}) = 3$ that three transmission errors occurred   ⇒   solutions 1 and 3.


(4)  Correct are statements 1 and 2:

  • Maximizing the branch metrics ${\it \Lambda}_i(S_{\mu})$ according to the right sketch in the above graph gives the same result as minimizing the branch metrics ${\it \Gamma}_i(S_{\mu})$ shown on the left. Also, the surviving and deleted branches are identical in both graphs.
  • The given equation is also correct, which is shown here only on the example $i = 7$:
$${\it \Lambda}_7(S_0)) = 2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
  • The last statement is false. Rather applies  $〈x_i', \, y_i〉 ∈ \{–2, \, 0, \, +2\}$.


Hints: In "Exercise 3.11", path finding is demonstrable for the same example, assuming ${\it \Lambda}_i(S_{\mu})$–metrics as shown in the right graph.