Difference between revisions of "Aufgaben:Exercise 2.11Z: Erasure Channel for Symbols"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel}}
 
{{quiz-Header|Buchseite=Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel}}
  
[[File:P_ID2543__KC_Z_2_11.png|right|frame|Erase channel for symbols: $m$-BEC]]
+
[[File:P_ID2543__KC_Z_2_11.png|right|frame|Erasure channel for symbols:  "m–BEC"]]
The channel model  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|"Binary Erasure Channel"]]  (BEC) describes a bit-level erasure channel:  
+
The channel model  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|"Binary Erasure Channel"]]  $\rm (BEC)$ describes a bit-level erasure channel:  
*A binary symbol  $0$  or  $1$  is correctly transmitted with probability  $1 - \lambda$  and marked as an erasure  $\lambda$  with probability  $\rm E$.  
+
*A binary symbol  $(0$  or  $1)$  is correctly transmitted with probability  $1 - \lambda$  and marked as an erasure  "$\rm E$"  with probability  $\lambda$.
*In contrast to  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC| "Binary Symmetric Channel"]]  (BSC), corruptions  $(0 &#8594 1, \ 1 → 0)$  cannot occur here.
+
 +
*In contrast to the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC| "Binary Symmetric Channel"]]  $\rm (BSC)$,  falsifications  $(0 &#8594 1, \ 1 → 0)$  cannot occur here.
  
  
A Reed–Solomon code is based on a Galois field  ${\rm GF}(2^m)$  with integer  $m$. Thus, each code symbol  $c$  can be represented by  $m$ bits . If one wants to apply the BEC–model here, one has to modify it to the  $m\text{-BEC}$ model  as shown in the diagram below for  $m = 2$ :
+
A Reed–Solomon code is based on a Galois field   ${\rm GF}(2^m)$   with integer  $m$.  Thus,  each code symbol   $c$   can be represented by  $m$  bits.  If one wants to apply the BEC model here,  one has to modify it to the  "$m$–BEC"  model  as shown in the diagram below for  $m = 2$:
  
*All code symbols – in binary representation  $00, \ 01, \ 10, \ 11$  – are transmitted correctly with probability  $1 - \lambda_2$ .  
+
*All code symbols   $($in binary representation  $00, \ 01, \ 10, \ 11)$   are transmitted correctly with probability  $1 - \lambda_2$ .  
*Thus, the probability of an erased symbol  is $\lambda_2$.  
+
 
 +
*Thus,  the probability of an erased symbol  is  $\lambda_2$.
 +
 
*Note that already a single erased bit leads to the erased received symbol  $y = \rm E$ .
 
*Note that already a single erased bit leads to the erased received symbol  $y = \rm E$ .
  
Line 21: Line 24:
 
Hints:
 
Hints:
 
* This exercise belongs to the chapter  [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel| "Reed–Solomon Decoding at the Erasure Channel"]].
 
* This exercise belongs to the chapter  [[Channel_Coding/Reed-Solomon_Decoding_for_the_Erasure_Channel| "Reed–Solomon Decoding at the Erasure Channel"]].
* For a code based on  ${\rm GF}(2^m)$  the outlined  $2$ BEC model is to be extended to  $m$ BEC.  
+
 
*The erasure probability of this model is then denoted by  $\lambda_m$ .
+
* For a code based on  ${\rm GF}(2^m)$  the outlined  $2$–BEC model is to be extended to  $m$–BEC.
*For the first subtasks, always  $\lambda = 0.2$ for the erasure probability of the basic model according to the upper graph.
+
 +
*The erasure probability of this model is then denoted by  $\lambda_m$.
 +
 
 +
*For the first subtasks,  use always  $\lambda = 0.2$  for the erasure probability of the basic model according to the upper graph.
 
   
 
   
  
Line 30: Line 36:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{$\lambda = 0.2$ is valid. With what probabilities do the possible received values occur in the&nbsp; BEC basic model&nbsp;?
+
{$\lambda = 0.2$&nbsp; is valid.&nbsp; With what probabilities do the possible received values occur in the&nbsp; BEC basic model&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y = 0) \ = \ ${ 40 3% } $\ \%$
 
${\rm Pr}(y = 0) \ = \ ${ 40 3% } $\ \%$
Line 36: Line 42:
 
${\rm Pr}(y = {\rm 1}) \ = \ ${ 40 3% } $\ \%$
 
${\rm Pr}(y = {\rm 1}) \ = \ ${ 40 3% } $\ \%$
  
{What is the erasure probability&nbsp; $\lambda_2$&nbsp; at symbol level&nbsp; $(2$ BEC model$)$ when the RS code is based on&nbsp; $\rm GF(2^2)$&nbsp; $(\lambda = 0.2)$?
+
{$\lambda = 0.2$&nbsp; is valid.&nbsp; What is the erasure probability&nbsp; $\lambda_2$&nbsp; at symbol level&nbsp; $(2$&ndash;BEC model$)$&nbsp; when the Reed-Solomon code is based on&nbsp; $\rm GF(2^2)$?
 
|type="{}"}
 
|type="{}"}
 
$\lambda_2 \ = \ ${ 36 3% } $\ \%$
 
$\lambda_2 \ = \ ${ 36 3% } $\ \%$
  
{What is the erasure probability&nbsp; $\lambda_m$ when the&nbsp; $m$ BEC model&nbsp; is fitted to the&nbsp; $\rm RSC \, (255, \, 223, \, 33)_{256}$&nbsp; $(\lambda = 0.2)$?
+
{$\lambda = 0.2$&nbsp; is valid.&nbsp; What is the erasure probability&nbsp; $\lambda_m$,&nbsp; when the&nbsp; $m$&ndash;BEC model&nbsp; is fitted to the&nbsp; $\rm RSC \, (255, \, 223, \, 33)_{256}$?
 
|type="{}"}
 
|type="{}"}
 
$\lambda_m \ = \ ${ 83.2 3% } $\ \%$
 
$\lambda_m \ = \ ${ 83.2 3% } $\ \%$
  
{What is the maximum allowed erasure probability&nbsp; $\lambda$&nbsp; in&nbsp; BEC basic model&nbsp; for&nbsp; $\lambda_m &#8804; 0.2$&nbsp; to hold?
+
{What is the maximum allowed erasure probability&nbsp; $\lambda$&nbsp; of the&nbsp; "BEC basic model"&nbsp; for&nbsp; $\lambda_m &#8804; 0.2$&nbsp; to hold?
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \ \big[\lambda\big ] \ = \ ${ 2.75 3% } $\ \%$
 
${\rm Max} \ \big[\lambda\big ] \ = \ ${ 2.75 3% } $\ \%$
  
{What is the probability of receiving the "zero symbol" in this case?
+
{What is the probability of receiving the&nbsp;  "zero symbol"&nbsp; in this case?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y_{\rm bin} = 00000000) \ = \ ${ 0.3125 3% } $\ \%$
 
${\rm Pr}(y_{\rm bin} = 00000000) \ = \ ${ 0.3125 3% } $\ \%$

Revision as of 13:56, 21 October 2022

Erasure channel for symbols:  "m–BEC"

The channel model  "Binary Erasure Channel"  $\rm (BEC)$ describes a bit-level erasure channel:

  • A binary symbol  $(0$  or  $1)$  is correctly transmitted with probability  $1 - \lambda$  and marked as an erasure  "$\rm E$"  with probability  $\lambda$.


A Reed–Solomon code is based on a Galois field   ${\rm GF}(2^m)$   with integer  $m$.  Thus,  each code symbol   $c$   can be represented by  $m$  bits.  If one wants to apply the BEC model here,  one has to modify it to the  "$m$–BEC"  model  as shown in the diagram below for  $m = 2$:

  • All code symbols   $($in binary representation  $00, \ 01, \ 10, \ 11)$   are transmitted correctly with probability  $1 - \lambda_2$ .
  • Thus,  the probability of an erased symbol  is  $\lambda_2$.
  • Note that already a single erased bit leads to the erased received symbol  $y = \rm E$ .




Hints:

  • For a code based on  ${\rm GF}(2^m)$  the outlined  $2$–BEC model is to be extended to  $m$–BEC.
  • The erasure probability of this model is then denoted by  $\lambda_m$.
  • For the first subtasks,  use always  $\lambda = 0.2$  for the erasure probability of the basic model according to the upper graph.



Questions

1

$\lambda = 0.2$  is valid.  With what probabilities do the possible received values occur in the  BEC basic model ?

${\rm Pr}(y = 0) \ = \ $

$\ \%$
${\rm Pr}(y = {\rm E}) \ = \ $

$\ \%$
${\rm Pr}(y = {\rm 1}) \ = \ $

$\ \%$

2

$\lambda = 0.2$  is valid.  What is the erasure probability  $\lambda_2$  at symbol level  $(2$–BEC model$)$  when the Reed-Solomon code is based on  $\rm GF(2^2)$?

$\lambda_2 \ = \ $

$\ \%$

3

$\lambda = 0.2$  is valid.  What is the erasure probability  $\lambda_m$,  when the  $m$–BEC model  is fitted to the  $\rm RSC \, (255, \, 223, \, 33)_{256}$?

$\lambda_m \ = \ $

$\ \%$

4

What is the maximum allowed erasure probability  $\lambda$  of the  "BEC basic model"  for  $\lambda_m ≤ 0.2$  to hold?

${\rm Max} \ \big[\lambda\big ] \ = \ $

$\ \%$

5

What is the probability of receiving the  "zero symbol"  in this case?

${\rm Pr}(y_{\rm bin} = 00000000) \ = \ $

$\ \%$


Solution

(1)  Due to the symmetry of the given BEC model (bit-level erasure channel), the erasure probability is:

$$\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 20\%}.$$

Since code symbols $0$ and $1$ are equally likely, we obtain ${\rm Pr}(y = 0) \ \underline{= 40\%}$ and ${\rm Pr}(y = 1) \ \underline{= 40\%}$ for their probabilities.


(2)  Without limiting generality, we assume the code symbol $c_{\rm binary} = $ "$00$" to solve this exercise.

  • According to the 2 BEC model, the receive symbol $y_{\rm binary}$ can then be either "$00$" or canceled $(\rm E)$ and it holds:
$${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 36\%}\hspace{0.05cm}. $$
  • This assumes that an erasure is avoided only if neither of the two bits has been erased.


(3)  The $\rm RSC \, (255, \, 223, \, 33)_{256}$ is based on the Galois field $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. The result of subtask (2) must now be adapted to this case. For the $8$ BEC holds:

$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 83.2\%}\hspace{0.05cm}. $$


(4)  From the condition $\lambda_m ≤ 0.2$ it follows directly $1 - \lambda_m ≥ 0.8$. From this follows further:

$$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} \underline{\le 2.75\%}\hspace{0.05cm}.$$


(5)  Here one proceeds as follows:

  • With $\lambda = 0.0275 \Rightarrow \ \lambda_m = 0.2$, $20\%$ of the receiving symbols are erasures.
  • The $2^8 = 256$ receiving symbols ($00000000$   ...   $11111111$) are all equally likely. It follows:
$${\rm Pr}(y_{\rm bin} = 00000000) = \hspace{0.1cm}\text{...} \hspace{0.1cm}= {\rm Pr}(y_{\rm bin} = 11111111)= \frac{0.8}{256} \hspace{0.15cm}\underline{= 0.3125\%}\hspace{0.05cm}.$$