Difference between revisions of "Aufgaben:Exercise 1.3: Frame Structure of ISDN"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN-Basisanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Basic_Access
 
}}
 
}}
  
[[File:P_ID1581__Bei_A_1_3_neu.png|right|frame|Rahmenstruktur der  $\rm S_{0}$–Schnittstelle]]
+
[[File:EN_Bei_A_1_3.png|right|frame|Frame structure of the  $\rm S_{0}$ interface]]
Die Grafik zeigt die Rahmenstruktur der  $\rm S_{0}$–Schnittstelle. Jeder Rahmen der Dauer  $T_{\rm R}$  beinhaltet $48$ Bit, darunter:
+
The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:
*$16$ Bit für den ''Bearer Channel''    $\rm B1$ (hellblau),
+
*$16$  bits for the bearer channel   $\rm B1$  $($light blue$)$,
*$16$ Bit für den ''Bearer Channel''   $\rm B2$ (dunkelblau),
 
*$4$ Bit für den ''Data Channel''   $\rm D$ (grün).
 
  
 +
*$16$  bits for the bearer channel  $\rm B2$  $($dark blue$)$,
  
Gelb eingezeichnet sind die erforderlichen Steuerbits.
+
*$4$  bits for the data channel  $\rm D$  $($green$)$.
  
Vorgegeben wird für diese Aufgabe, dass jeder der beiden Basiskanäle  $\rm B1$  und  $\rm B2$  eine Nettodatenrate von  $R_{\rm B} = 64 \ \rm kbit/s$  bereitstellen soll.
 
  
Anzumerken ist noch, dass die Bitdauer  $T_{\rm B}$  des uncodierten Binärsignals gleichzeitig die Symboldauer des (modifizierten) AMI–Codes angibt, der jede binäre  „$1$”  dem Spannungspegel  $0 \ \rm V$  zuordnet und jede binäre  „$0$”  alternierend mit  $+0.75 \ \rm V$  bzw.  $–0.75 \ \rm V$  darstellt.
+
The required control bits are shown in yellow.
  
Die Zahlenwerte in der Grafik (rot markiert) geben eine Beispielfolge an, die in der Teilaufgabe  '''(5)'''  entsprechend dem modifizierten AMI–Code in Spannungspegel umgesetzt werden soll.
+
For this exercise,  it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 
*Bitnummer $48$ beinhaltet das so genannte  '''L–Bit'''.
 
*Dieses ist in der Teilaufgabe  '''(6)'''  so zu setzen, dass das Signal  $s(t)$  gleichsignalfrei wird.
 
  
 +
It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the  $($modified$)$  AMI code, 
 +
*which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and
  
 +
*alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  resp.  $–0.75 \ \rm V$. 
  
  
 +
The numerical values in the graphic  $($marked in red$)$  indicate an example sequence which is to be converted into voltage levels in subtask  '''(5)'''  according to the modified AMI code.
 +
*Bit number  $48$  contains the so-called  "$\rm L$  bit.
 +
*This is to be set in subtask  '''(6)'''  in such a way that the signal  $s(t)$  becomes DC–free.
  
  
  
  
''Hinweise:''
+
<u>Notes:</u>
  
*Die Aufgabe gehört zum Kapitel&nbsp; [[Examples_of_Communication_Systems/ISDN-Basisanschluss|ISDN-Basisanschluss]].  
+
*This exercise is part of the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
*Der AMI–Code wird ausführlich im Kapitel&nbsp; [[Digital_Signal_Transmission/Symbolweise_Codierung_mit_Pseudoternärcodes#Eigenschaften_des_AMI-Codes|Eigenschaften des AMI-Codes]]&nbsp; des Buches „Digitalsignalübertragung” beschrieben.
+
*Anzumerken ist ferner, dass die ersten $47$ Bit genau $22$ „Nullen” enthalten.  
+
*The AMI code is described in detail in the chapter&nbsp; [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|"Properties of the AMI code"]]&nbsp; of the book&nbsp; "Digital Signal Transmission".
  
 +
*It should also be noted that the first&nbsp; $47$&nbsp; bits contain exactly&nbsp; $22$&nbsp; "zeros".
  
  
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Rahmendauer&nbsp; $T_{\rm R}$?
+
{What is the frame duration&nbsp; $($German:&nbsp; "Rahmendauer" &nbsp; &rArr; &nbsp; subscript "R"$)$&nbsp; $T_{\rm R}$?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm R} \ = \ $ { 250 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 250 3% } $\ \rm &micro; s$
  
{Wie groß ist die Bitdauer&nbsp; $T_{\rm B}$? ''Hinweis:'' &nbsp;Diese ist gleich der Symboldauer nach der AMI–Codierung.
+
{What is the bit duration&nbsp; $T_{\rm B}$?&nbsp; Note:&nbsp; This is equal to the symbol duration after AMI coding.
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm B} \ = \ $ { 5.208 3% } $\ \rm &micro; s $
 
$T_{\rm B} \ = \ $ { 5.208 3% } $\ \rm &micro; s $
  
{Wie groß ist die Gesamt–Bruttodatenrate&nbsp; $R_{\rm ges}$?
+
{What is the total gross data rate&nbsp; $R_{\rm gross}$?
 
|type="{}"}
 
|type="{}"}
$R_{\rm ges} \ = \ $ { 192 3% } $\ \rm kbit/s$
+
$R_{\rm gross} \ = \ $ { 192 3% } $\ \rm kbit/s$
  
{Wieviele Steuerbits&nbsp; $(N_{\rm St})$&nbsp; werden pro Rahmen übertragen?
+
{How many control bits&nbsp; $(N_{\rm CB})$&nbsp; are transmitted per frame?
 
|type="{}"}
 
|type="{}"}
$N_{\rm St} \ = \ $ { 12 3% }  
+
$N_{\rm CB} \ = \ $ { 12 3% }  
  
{Mit welchen Spannungswerten&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; werden Bit 10, 11 und 12 (grau hinterlegter Block) dargestellt?
+
{With which voltage values&nbsp; $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; are the bits 10, 11 and 12&nbsp; (gray shaded block)&nbsp; represented?
 
|type="{}"}
 
|type="{}"}
 
$U_{10} \ = \ $ { -0.8025--0.6975 } $\ \rm V $
 
$U_{10} \ = \ $ { -0.8025--0.6975 } $\ \rm V $
Line 63: Line 67:
 
$U_{12} \ = \ $ { 0.75 3% } $\ \rm V $
 
$U_{12} \ = \ $ { 0.75 3% } $\ \rm V $
  
{Welchen Spannungswert&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; besitzt das '''L–Bit''' am Ende?
+
{What is the voltage value&nbsp; $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; of the&nbsp; $\rm L$&nbsp; bit at the end?
 
|type="{}"}
 
|type="{}"}
 
$U_{48} \ = \ $ { 0. } $\ \rm V $
 
$U_{48} \ = \ $ { 0. } $\ \rm V $
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; In each frame,&nbsp; $16$&nbsp; bits of the base channels&nbsp; $\rm B1$&nbsp; and&nbsp; $\rm B2$&nbsp; are transmitted.
*In jedem Rahmen werden jeweils 16 Bit der Basiskanäle B1 und B2 übertragen.  
+
*With the frame duration&nbsp; $T_{\rm R}$,&nbsp; the bit rate&nbsp; $(R_{\rm B} = 64 \ \rm kbit/s)$&nbsp; of each frame is thus:
*Mit der Rahmendauer $T_{\rm R}$ gilt somit für die Bitrate $(R_{\rm B} = 64 \ \rm kbit/s)$ eines jeden Rahmens:
 
 
:$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm &micro; s}} \hspace{0.05cm}.$$
 
:$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm &micro; s}} \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp;  
+
'''(2)'''&nbsp; Thus,&nbsp; the following time duration is available for each of the&nbsp; $48$&nbsp; bits:
*Für jedes einzelne der 48 Bit steht somit folgende Zeitdauer zur Verfügung.
 
 
:$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm &micro; s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm &micro; s}}$$
 
:$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm &micro; s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm &micro; s}}$$
*Da bei der (modifizierten) AMI–Codierung jedes Binärsymbol durch ein Ternärsymbol gleicher Dauer ersetzt wird, ist die Symboldauer nach der AMI–Codierung ebenfalls gleich $T_{\rm B}$.
+
*Since in&nbsp; (modified)&nbsp; AMI encoding each binary symbol is replaced by a ternary symbol of the same duration,&nbsp; the symbol duration after AMI encoding is also&nbsp; $T_{\rm B}$.
 +
 
  
  
 +
'''(3)'''&nbsp; The gross data rate is equal to the reciprocal of the bit duration:
 +
:$$R_{\rm gross} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Die Bruttodatenrate ist gleich dem Kehrwert der Bitdauer:
 
:$$R_{\rm ges} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$
 
  
 +
'''(4)'''&nbsp; The number of control bits&nbsp; $\rm (CB)$&nbsp; is:
 +
:$$N_{\rm CB} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
 +
*These are marked in yellow in the graph.
  
'''(4)'''&nbsp; Die Anzahl der Steuerbit beträgt:
+
*Thus,&nbsp; the total gross data rate calculated in the last subquestion is composed as follows:
:$$N_{\rm St} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
+
:$$R_{\rm gross} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm CB}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$
*Diese sind in der Grafik gelb markiert.
 
*Die in der letzten Teilfrage berechnete Gesamt–Bruttodatenrate setzt sich somit wie folgt zusammen:
 
:$$R_{\rm ges} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm St}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$
 
  
  
'''(5)'''&nbsp; Zu beachten ist, dass die erste „0” mit positiver Polarität codiert wird und alle folgenden alternierend mit $±0.75 \ {\rm V}$:  
+
'''(5)'''&nbsp; Note that the first&nbsp; "0"&nbsp; is encoded with positive polarity and all following alternating with&nbsp; $±0.75 \ {\rm V}$:  
 
*$U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
 
*$U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
 +
 
*$ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...}  = -0.75 \ {\rm V}$.
 
*$ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...}  = -0.75 \ {\rm V}$.
  
  
Daraus folgt weiter:  
+
It follows further:
*Das Bit $b_{10} = 0$ wird dargestellt durch $U_{10} \underline{= -0.75 \ \rm V}$,  
+
*Bit&nbsp; $b_{10} = 0$&nbsp; is represented by&nbsp; $U_{10} \underline{= -0.75 \ \rm V}$,
*Das Bit $b_{11} = 1$ durch $U_{11} \underline{= 0 \ \rm V}$ und
+
*Das Bit $b_{12} = 0$ durch $U_{12} \underline{= +0.75 \ \rm V}$.  
+
*bit&nbsp; $b_{11} = 1$&nbsp; by&nbsp; $U_{11} \underline{= 0 \ \rm V}$,
 +
 +
*bit&nbsp; $b_{12} = 0$&nbsp; by&nbsp; $U_{12} \underline{= +0.75 \ \rm V}$.  
  
  
 
'''(6)'''&nbsp;  
 
'''(6)'''&nbsp;  
*Das '''L'''–Bit hat die Aufgabe, das AMI–codierte Signal (über alle 48 Ternärsymbole) gleichsignalfrei zu halten.  
+
*The&nbsp; $\rm L$&nbsp; bit has the task of keeping the AMI encoded signal&nbsp; $($over all&nbsp; $48$&nbsp; ternary symbols$)$&nbsp; DC-free.
*Da 22 mal das Binärsymbol „0” aufgetreten ist (also je 11 mal die Spannungswerte $+0.75 \ \rm V$ und $-0.75 \ \rm V$) und dementsprechend 27 mal das Binärsymbol „1” (Spannungswert $0 \ \rm V$), ist $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$ zu setzen.
+
 
 +
*Since the binary symbol&nbsp; "0"&nbsp; has occurred&nbsp; $22$&nbsp; times&nbsp; $($i.e.&nbsp; $11$&nbsp; times each the voltage values&nbsp; $+0.75 \ \rm V$&nbsp; and&nbsp; $-0.75 \ \rm V)$&nbsp; and correspondingly&nbsp; $27$&nbsp; times the binary symbol&nbsp; "1"&nbsp; $($voltage value&nbsp; $0 \ \rm V)$,&nbsp; $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$&nbsp; must be set.
  
  
Line 115: Line 122:
  
  
[[Category:Examples of Communication Systems: Exercises|^1.2 ISDN-Basisanschluss^]]
+
[[Category:Examples of Communication Systems: Exercises|^1.2 ISDN Basic Access^]]

Latest revision as of 16:51, 24 October 2022

Frame structure of the  $\rm S_{0}$ interface

The graphic shows the frame structure of the  $\rm S_{0}$ interface.  Each frame of duration  $T_{\rm R}$  contains  $48$  bits, among them:

  • $16$  bits for the bearer channel  $\rm B1$  $($light blue$)$,
  • $16$  bits for the bearer channel  $\rm B2$  $($dark blue$)$,
  • $4$  bits for the data channel  $\rm D$  $($green$)$.


The required control bits are shown in yellow.

For this exercise,  it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 

It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the  $($modified$)$  AMI code, 

  • which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and
  • alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  resp.  $–0.75 \ \rm V$. 


The numerical values in the graphic  $($marked in red$)$  indicate an example sequence which is to be converted into voltage levels in subtask  (5)  according to the modified AMI code.

  • Bit number  $48$  contains the so-called  "$\rm L$  bit.
  • This is to be set in subtask  (6)  in such a way that the signal  $s(t)$  becomes DC–free.



Notes:

  • It should also be noted that the first  $47$  bits contain exactly  $22$  "zeros".



Questions

1

What is the frame duration  $($German:  "Rahmendauer"   ⇒   subscript "R"$)$  $T_{\rm R}$?

$T_{\rm R} \ = \ $

$\ \rm µ s$

2

What is the bit duration  $T_{\rm B}$?  Note:  This is equal to the symbol duration after AMI coding.

$T_{\rm B} \ = \ $

$\ \rm µ s $

3

What is the total gross data rate  $R_{\rm gross}$?

$R_{\rm gross} \ = \ $

$\ \rm kbit/s$

4

How many control bits  $(N_{\rm CB})$  are transmitted per frame?

$N_{\rm CB} \ = \ $

5

With which voltage values  $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  are the bits 10, 11 and 12  (gray shaded block)  represented?

$U_{10} \ = \ $

$\ \rm V $
$U_{11} \ = \ $

$\ \rm V $
$U_{12} \ = \ $

$\ \rm V $

6

What is the voltage value  $(0 \ {\rm V}, +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  of the  $\rm L$  bit at the end?

$U_{48} \ = \ $

$\ \rm V $


Solution

(1)  In each frame,  $16$  bits of the base channels  $\rm B1$  and  $\rm B2$  are transmitted.

  • With the frame duration  $T_{\rm R}$,  the bit rate  $(R_{\rm B} = 64 \ \rm kbit/s)$  of each frame is thus:
$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm µ s}} \hspace{0.05cm}.$$


(2)  Thus,  the following time duration is available for each of the  $48$  bits:

$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm µ s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm µ s}}$$
  • Since in  (modified)  AMI encoding each binary symbol is replaced by a ternary symbol of the same duration,  the symbol duration after AMI encoding is also  $T_{\rm B}$.


(3)  The gross data rate is equal to the reciprocal of the bit duration:

$$R_{\rm gross} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$


(4)  The number of control bits  $\rm (CB)$  is:

$$N_{\rm CB} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
  • These are marked in yellow in the graph.
  • Thus,  the total gross data rate calculated in the last subquestion is composed as follows:
$$R_{\rm gross} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm CB}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$


(5)  Note that the first  "0"  is encoded with positive polarity and all following alternating with  $±0.75 \ {\rm V}$:

  • $U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
  • $ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...} = -0.75 \ {\rm V}$.


It follows further:

  • Bit  $b_{10} = 0$  is represented by  $U_{10} \underline{= -0.75 \ \rm V}$,
  • bit  $b_{11} = 1$  by  $U_{11} \underline{= 0 \ \rm V}$,
  • bit  $b_{12} = 0$  by  $U_{12} \underline{= +0.75 \ \rm V}$.


(6) 

  • The  $\rm L$  bit has the task of keeping the AMI encoded signal  $($over all  $48$  ternary symbols$)$  DC-free.
  • Since the binary symbol  "0"  has occurred  $22$  times  $($i.e.  $11$  times each the voltage values  $+0.75 \ \rm V$  and  $-0.75 \ \rm V)$  and correspondingly  $27$  times the binary symbol  "1"  $($voltage value  $0 \ \rm V)$,  $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$  must be set.