Difference between revisions of "Aufgaben:Exercise 1.4Z: Modified MS43 Code"

From LNTwww
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN-Basisanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Basic_Access
 
}}
 
}}
  
[[File:P_ID1583__Bei_Z_1_4.png|right|frame|Codetabelle des MMS43-Codes]]
+
[[File:EN_Bei_Z_1_4.png|right|frame|Code table of the MMS43 code]]
Bei der ISDN–Datenübertragung wird in Deutschland und Belgien auf der so genannten $U_{\rm K0}$–Schnittstelle (Übertragungsstrecke zwischen der Vermittlungsstelle und dem NTBA) der MMS43–Code eingesetzt. Die Abkürzung „MMS43” steht für '''M'''odified '''M'''onitored '''S'''um '''4'''B'''3'''T.
+
For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "$\rm U_{\rm K0}$"  interface  $($transmission path between the exchange and the NTBA$)$. 
  
Es handelt sich hierbei um einen 4B3T–Blockcode mit den vier in der Grafik gezeigten Codetabellen, die gemäß der sog. „Laufenden Digitalen Summe” (nach $l$–Blöcken)
+
The abbreviation  "MMS43"  stands for  "'''M'''odified '''M'''onitored '''S'''um '''4'''B'''3'''T".
:$${\it \Sigma}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
 
zur Codierung benutzt werden. Zur Initialisierung wird $\Sigma_{0} = 0$ verwendet.
 
Die Farbgebungen in der Grafik bedeuten:
 
*Ändert sich die laufende digitale Summe nicht (gilt also $\Sigma_{l+1} = \Sigma _{l}$), so ist ein Feld hellgrau hinterlegt.
 
*Eine Zunahme ($\Sigma_{l+1} > \Sigma_{l}$) ist rot hinterlegt, eine Abnahme ($\Sigma_{l+1} < \Sigma _{l}$) blau.
 
*Je intensiver diese Farben sind, um so größer ist die Änderung der laufenden digitalen Summe.
 
  
 +
This is a 4B3T block code with the four code tables shown in the graphic,&nbsp; which are used for coding according to the so-called "running digital sum"&nbsp; $($after&nbsp; $l$&nbsp; blocks$)$:
 +
:$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
 +
For initialization:&nbsp; ${\it \Sigma}_{0} = 0$&nbsp; is used.
  
  
''Hinweis:''
+
The colorings in the graph mean:
 +
*If the running digital sum does not change &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$,&nbsp; a field is grayed out.
  
Diese Aufgabe bezieht sich auf [[Beispiele_von_Nachrichtensystemen/ISDN-Basisanschluss|ISDN-Basisanschluss]] dieses Buches sowie auf [[Digitalsignalübertragung/Blockweise_Codierung_mit_4B3T-Codes|Blockweise Codierung mit 4B3T-Codes]] des Buches „Digitalsignalübertragung”.
+
*An increase &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$ &nbsp; is highlighted in red,&nbsp; a decrease &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$ &nbsp; in blue.
===Fragebogen===
+
 
 +
*The more intense these colors are,&nbsp; the greater the change in the running digital sum.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
 
 +
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
 +
 +
*Information about the MMS43 code can be found in the chapter&nbsp;  [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"Block Coding with 4B3T Codes"]]&nbsp; of the book&nbsp; "Digital signal transmission".
 +
 +
 
 +
 
 +
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Was sind Gründe dafür, dass bei ISDN statt des redundanzfreien Binärcodes ein 4B3T–Code verwendet wird?
+
{What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?
 
|type="[]"}
 
|type="[]"}
- 4B3T ist prinzipiell besser als der redundanzfreie Binärcode.
+
- 4B3T is in principle better than the redundancy-free binary code.
+ Bei $H_{\rm K}(f = 0) = 0$ sollte das Sendesignal gleichsignalfrei sein.
+
+ The transmitted signal should be free of DC signals if the channel frequency response&nbsp; $H_{\rm K}(f = 0) = 0$.&nbsp;
+ Eine kleine Symbolrate ($1/T$) ermöglicht größere Kabellänge.
+
+ A small symbol rate&nbsp; $(1/T)$&nbsp; allows a longer cable length.
  
{Codieren Sie die Binärfolge „1100 0100 0110 1010” gemäß der Tabelle. Wie lautet der Koeffizient des dritten Ternärsymbols des vierten Blocks?
+
{Encode the binary sequence&nbsp; "$1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$"&nbsp; according to the table. <br>What is the coefficient of the third ternary symbol of the fourth block?
 
|type="{}"}
 
|type="{}"}
 
$a_{12} \ = \ $ { -1.03--0.97 }
 
$a_{12} \ = \ $ { -1.03--0.97 }
  
{Ermitteln Sie das Markovdiagramm für den Übergang von $\Sigma_{l}$ auf $\Sigma_{l+1}$. Welche Übergangswahrscheinlichkeiten ergeben sich?
+
{Determine the Markov diagram for the transition from&nbsp; ${\it \Sigma}\hspace{0.05cm}_{l}$&nbsp; to&nbsp; ${\it \Sigma}\hspace{0.05cm}_{l+1}$.&nbsp; What are the transition probabilities?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(\Sigma_{l+1} = 0 \ | \ \Sigma_{l}=0) \ = \ $ { 0.375 3% }
+
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $ { 0.375 3% }
${\rm Pr}(\Sigma_{l+1} = 2 \ | \ \Sigma_{l}=0) \ = \ $ { 0.1875 3% }
+
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 2 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $ { 0.1875 3% }
${\rm Pr}(\Sigma_{l+1} = 0 \ | \ \Sigma_{l}=2) \ = \ $ { 0 3% }
+
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=2) \ = \ $ { 0 3% }
  
{Welche Eigenschaften folgen aus dem Markovdiagramm?
+
{What properties follow from the Markov diagram?
 
|type="[]"}
 
|type="[]"}
- Die Wahrscheinlichkeiten ${\rm Pr}(\Sigma_{l} = 0), ... , {\rm Pr}(\Sigma_{l} = 3)$ sind gleich.
+
- The probabilities &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \  , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$ &nbsp; are equal.
+ Es gilt ${\rm Pr}(\Sigma_{l} = 0) = {\rm Pr}(\Sigma_{l} = 3)$ und ${\rm Pr}(\Sigma_{l} = 1) = {\rm Pr}(\Sigma_{l} = 2)$.
+
+ ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$ &nbsp; and &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$&nbsp;  are valid.
+ Die Extremwerte (0 bzw. 3) treten seltener auf als 1 oder 2.
+
+ The extreme values&nbsp; $(0$ or $3)$&nbsp; occur less frequently than&nbsp; $1$&nbsp; or&nbsp; $2$.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Die erste Aussage trifft nicht zu: Beispielsweise ergibt sich beim AWGN–Kanal (additives weißes Gaußsches Rauschen) mit einem 4B3T–Code im Vergleich zum redundanzfreien Binärcode eine deutlich größere Fehlerwahrscheinlichkeit aufgrund der ternären Entscheidung. Der wesentliche Grund für die Verwendung eines redundanten Übertragungscodes ist vielmehr, dass über einen „Telefonkanal” kein Gleichsignalanteil übertragen werden kann.
+
'''(1)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
 +
*The first statement is not true:&nbsp; For example,&nbsp; the AWGN channel&nbsp; ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
 +
 
 +
*The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a&nbsp; "telephone channel".
 +
 
 +
*The&nbsp; $25 \%$&nbsp; smaller symbol rate&nbsp; $(1/T)$&nbsp; of the 4B3T code also accommodates the transmission characteristics of copper lines&nbsp; (strong increase in attenuation with frequency).
 +
 
 +
*For a given line attenuation,&nbsp; therefore,&nbsp; a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With the initial value&nbsp; ${\it \Sigma}_{0} = 0$,&nbsp; the 4B3T coding results in:
 +
 
 +
* '''1100''' &nbsp; &rArr; &nbsp; "+  +  +" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{1} = 3$,
 +
 
 +
* '''0100''' &nbsp; &rArr; &nbsp; " –  +  '''0'''" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{2} = 3$,
 +
 
 +
* '''0110''' &nbsp; &rArr; &nbsp; "–  –  +" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{3} = 2$,
 +
 
 +
* '''1010''' &nbsp; &rArr; &nbsp; "+  –  –" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{4} = 1$.
 +
 
 +
 
 +
Thus,&nbsp; the amplitude coefficient we are looking for is&nbsp; $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.
 +
 
 +
 
  
Auch die um $25 \%$ kleinere Schrittgeschwindigkeit ($1/T$) des 4B3T–Codes kommt den Übertragungseigenschaften von Kupferleitungen (starker Dämpfungsanstieg mit der Frequenz) entgegen. Bei gegebener Leitungsdämpfung lässt sich mit dem 4B3T–Code eine größere Länge überbrücken als mit einem redundanzfreien Binärsignal. Richtig sind also <u>die Aussagen 2 und 3</u>.
+
[[File:P_ID1341_Dig_A_2_6c.png|right|frame|Markov diagram for the MMS43 code]]
 +
'''(3)'''&nbsp; From the coloring of the given code table,&nbsp; one can determine the following Markov diagram.
 +
*From it,&nbsp; the transition probabilities we are looking for can be read:
  
'''(2)'''&nbsp; Die 4B3T–Codierung ergibt mit dem Initialwert $\Sigma_{0} = 0$:
+
:$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$
 +
:$${\rm Pr}({\it \Sigma}_{l+1} = 2 \ | \ {\it \Sigma}_{l}=0) \ = \ 3/16 \underline{ \ = \ 0.1875},$$
 +
:$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=2) \underline{ \ = \ 0}.$$
  
'''1100''' $\Rightarrow$ +  +  + $(\Sigma_{1} = 3)$,
 
  
'''0100''' $\Rightarrow$ –  +  '''0'''  $(\Sigma_{2} = 3)$,
 
  
'''0110''' $\Rightarrow$  –  –  + $(\Sigma_{3} = 2)$,
+
'''(4)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
 +
*The first statement is false,&nbsp; which can be seen from the asymmetries in the Markov diagram.
  
'''1010''' $\Rightarrow$  +  –  – $(\Sigma_{4} = 1)$.
+
*On the other hand,&nbsp; there are symmetries with respect to the states&nbsp; "0"&nbsp; and&nbsp; "3"&nbsp; and between&nbsp; "1"&nbsp; and&nbsp; "2".
  
Der gesuchte Amplitudenkoeffizient ist somit $a_{12}\underline{ = –1}$.
 
  
'''(3)'''&nbsp; Aus der Farbgebung der vorgegebenen Codetabelle kann man das folgende Markovdiagramm ermitteln. Daraus können die gesuchten Übergangswahrscheinlichkeiten abgelesen werden:
+
In the following calculation,&nbsp; instead of&nbsp; ${\rm Pr}({\it \Sigma}_{l} = 0)$,&nbsp; we write&nbsp; ${\rm Pr}(0)$&nbsp; in a simplified way.
[[File:P_ID1341__Dig_A_2_6c.png|right|frame|Markovdiagramm für den MMS43-Code]]
+
* Taking advantage of the properties&nbsp; ${\rm Pr}(3) = {\rm Pr}(0)$&nbsp; and&nbsp; ${\rm Pr}(2) = {\rm Pr}(1)$,&nbsp; we get the following equations from the Markov diagram:
 +
:$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
 +
*From the further condition&nbsp; ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$&nbsp; follows further:
 +
:$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
 +
:This calculation is based on the&nbsp; <u>sum of the incoming arrows in the "0" condition</u>.  
  
 +
*One could also give equations for the other three states,&nbsp; but they all give the same result:
 +
:$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 +
:$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 +
:$$ {\rm Pr}(3) \ = \ \frac{1}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.$$
  
'''(4)'''&nbsp;
 
'''(5)'''&nbsp;
 
'''(6)'''&nbsp;
 
'''(7)'''&nbsp;
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 78: Line 122:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.2 ISDN-Basisanschluss^]]
+
[[Category:Examples of Communication Systems: Exercises|^1.2 ISDN Basic Access^]]

Latest revision as of 16:55, 24 October 2022

Code table of the MMS43 code

For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "$\rm U_{\rm K0}$"  interface  $($transmission path between the exchange and the NTBA$)$. 

The abbreviation  "MMS43"  stands for  "Modified Monitored Sum 4B3T".

This is a 4B3T block code with the four code tables shown in the graphic,  which are used for coding according to the so-called "running digital sum"  $($after  $l$  blocks$)$:

$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$

For initialization:  ${\it \Sigma}_{0} = 0$  is used.


The colorings in the graph mean:

  • If the running digital sum does not change   $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$,  a field is grayed out.
  • An increase   $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$   is highlighted in red,  a decrease   $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$   in blue.
  • The more intense these colors are,  the greater the change in the running digital sum.



Notes:



Questions

1

What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?

4B3T is in principle better than the redundancy-free binary code.
The transmitted signal should be free of DC signals if the channel frequency response  $H_{\rm K}(f = 0) = 0$. 
A small symbol rate  $(1/T)$  allows a longer cable length.

2

Encode the binary sequence  "$1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$"  according to the table.
What is the coefficient of the third ternary symbol of the fourth block?

$a_{12} \ = \ $

3

Determine the Markov diagram for the transition from  ${\it \Sigma}\hspace{0.05cm}_{l}$  to  ${\it \Sigma}\hspace{0.05cm}_{l+1}$.  What are the transition probabilities?

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 2 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=2) \ = \ $

4

What properties follow from the Markov diagram?

The probabilities   ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \ , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$   are equal.
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$   and   ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$  are valid.
The extreme values  $(0$ or $3)$  occur less frequently than  $1$  or  $2$.


Solution

(1)  Statements 2 and 3  are correct:

  • The first statement is not true:  For example,  the AWGN channel  ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
  • The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a  "telephone channel".
  • The  $25 \%$  smaller symbol rate  $(1/T)$  of the 4B3T code also accommodates the transmission characteristics of copper lines  (strong increase in attenuation with frequency).
  • For a given line attenuation,  therefore,  a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.


(2)  With the initial value  ${\it \Sigma}_{0} = 0$,  the 4B3T coding results in:

  • 1100   ⇒   "+ + +"   ⇒   ${\it \Sigma}_{1} = 3$,
  • 0100   ⇒   " – + 0"   ⇒   ${\it \Sigma}_{2} = 3$,
  • 0110   ⇒   "– – +"   ⇒   ${\it \Sigma}_{3} = 2$,
  • 1010   ⇒   "+ – –"   ⇒   ${\it \Sigma}_{4} = 1$.


Thus,  the amplitude coefficient we are looking for is  $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.


Markov diagram for the MMS43 code

(3)  From the coloring of the given code table,  one can determine the following Markov diagram.

  • From it,  the transition probabilities we are looking for can be read:
$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$
$${\rm Pr}({\it \Sigma}_{l+1} = 2 \ | \ {\it \Sigma}_{l}=0) \ = \ 3/16 \underline{ \ = \ 0.1875},$$
$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=2) \underline{ \ = \ 0}.$$


(4)  Statements 2 and 3  are correct:

  • The first statement is false,  which can be seen from the asymmetries in the Markov diagram.
  • On the other hand,  there are symmetries with respect to the states  "0"  and  "3"  and between  "1"  and  "2".


In the following calculation,  instead of  ${\rm Pr}({\it \Sigma}_{l} = 0)$,  we write  ${\rm Pr}(0)$  in a simplified way.

  • Taking advantage of the properties  ${\rm Pr}(3) = {\rm Pr}(0)$  and  ${\rm Pr}(2) = {\rm Pr}(1)$,  we get the following equations from the Markov diagram:
$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
  • From the further condition  ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$  follows further:
$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
This calculation is based on the  sum of the incoming arrows in the "0" condition.
  • One could also give equations for the other three states,  but they all give the same result:
$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(3) \ = \ \frac{1}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.$$