Difference between revisions of "Aufgaben:Exercise 1.5: HDB3 Coding"

From LNTwww
m (Text replacement - "[[Beispiele_von_Nachrichtensystemen" to "[[Examples_of_Communication_Systems")
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN–Primärmultiplexanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Primary_Multiplex_Connection
  
 
}}
 
}}
  
[[File:P_ID1624__Bei_A_1_5.png|right|frame|Signale bei HDB3-Codierung]]
+
[[File:EN_Bei_A_1_5.png|right|frame|Signals with HDB3 coding]]
Der ISDN–Primärmultiplexanschluss basiert auf dem  $\rm PCM–System \ 30/32$  und bietet 30 vollduplexfähige Basiskanäle, dazu noch einen Signalisierungskanal sowie einen Synchronisationskanal.
+
The ISDN primary rate interface  $\rm (PRI)$  is based on the  $\rm PCM\ system \ 30/32$  and offers 
 +
*$30$  full-duplex basic channels, 
  
Jeder dieser Kanäle, die im Zeitmultiplex übertragen werden, hat eine Datenrate von  $64 \ \rm kbit/s$. Ein Rahmen besteht aus jeweils einem Byte (8 Bit) aller 32 Kanäle. Die Dauer eines solchen Rahmens wird mit  $T_{\rm R}$  bezeichnet, während  $T_{\rm B}$  die Bitdauer angibt.
+
*plus a signaling channel
<br clear=all>
 
Sowohl auf der&nbsp; $\rm S_{\rm 2M}$– als auch auf der&nbsp; $\rm U_{\rm K2}$–Schnittstelle des  betrachteten ISDN–Systems wird der&nbsp; '''HDB3–Code'''&nbsp; verwendet, der vom AMI–Code abgeleitet ist. Es handelt sich hierbei um einen Pseudoternärcode&nbsp; $($Symbolumfang&nbsp; $M = 3$, Symboldauer&nbsp; $T = T_{\rm B})$, der sich vom AMI–Code in der Weise unterscheidet, dass lange Nullfolgen durch bewusste Verletzung der AMI–Codierregel vermieden werden. Dabei gilt:
 
  
Treten im AMI–codierten Signal&nbsp; $a(t)$&nbsp; vier aufeinanderfolgende&nbsp; „'''0'''”–Symbole auf, so werden diese durch vier andere Ternärsymbole ersetzt:
+
*and a synchronization channel.
*Sind vor diesem Viererblock im Signal&nbsp;  $a(t)$&nbsp; eine gerade Anzahl von&nbsp; „+'''1'''”&nbsp; aufgetreten und der letzte Puls positiv, so wird&nbsp; „'''0 0 0 0'''”&nbsp; durch&nbsp; „– '''0 0''' –”&nbsp; ersetzt. Ist der letzte Puls negativ, so wird&nbsp; „'''0 0 0 0'''”&nbsp; durch&nbsp; „+ '''0 0''' +”&nbsp; ersetzt.
 
*Bei ungerader Anzahl von Einsen vor diesem&nbsp; „'''0 0 0 0'''”–Block werden dagegen als Ersetzungen&nbsp; „'''0 0 0''' +”&nbsp; (falls letzter Puls positiv)&nbsp; oder&nbsp; „'''0 0 0''' –”&nbsp; (falls letzter Puls negativ)&nbsp; gewählt.
 
  
  
Die Grafik zeigt oben das Binärsignal&nbsp; $q(t)$&nbsp; und das Signal&nbsp; $a(t)$&nbsp; nach der AMI–Codierung. Das HDB3–Signal, das Sie im Laufe dieser Aufgabe ermitteln sollen, wird mit&nbsp; $c(t)$&nbsp; bezeichnet.
+
Each of these channels,&nbsp; which are transmitted in time division multiplex,&nbsp; has a data rate of&nbsp; $64 \ \rm kbit/s$.&nbsp; A frame consists of one byte&nbsp; $\rm (8$&nbsp; bits$)$&nbsp; of all&nbsp; $32$&nbsp; channels.&nbsp; The duration of such a frame&nbsp; $($German:&nbsp; "Rahmen"$)$&nbsp; is denoted by&nbsp; $T_{\rm R}$,&nbsp; while&nbsp; $T_{\rm B}$&nbsp; indicates the bit duration.
  
 +
On both the&nbsp; $\rm S_{\rm 2M}$ and&nbsp; $\rm U_{\rm K2}$ interfaces of the ISDN system under consideration,&nbsp; the &nbsp; '''HDB3 code''' &nbsp; is used,&nbsp; which is derived from the AMI code.&nbsp; This is a pseudo-ternary code&nbsp; $($symbol set size&nbsp; $M = 3$,&nbsp; symbol duration&nbsp; $T = T_{\rm B})$,&nbsp; that differs from the AMI code in that long zero sequences are avoided by deliberately violating the AMI coding rule.&nbsp; The following applies:
  
 +
If four consecutive&nbsp; "'''0'''"&nbsp; symbols occur in the AMI-encoded signal&nbsp; $a(t)$,&nbsp; these are replaced by four other ternary symbols:
 +
*If an even number of&nbsp; "+'''1'''"&nbsp; occurred before this four-symbol block the signal&nbsp;  $a(t)$&nbsp; and the last pulse is positive,&nbsp; "'''0 0 0 0'''"&nbsp; is replaced by&nbsp; "– '''0 0''' –".&nbsp; If the last pulse is negative,&nbsp; "'''0 0 0 0'''"&nbsp; is replaced by&nbsp; "+ '''0 0''' +".&nbsp;
  
 +
*On the other hand,&nbsp; if there is an odd number of&nbsp; "ones"&nbsp; before this&nbsp; "'''0 0 0 0'''" block,&nbsp; "'''0 0 0''' +"&nbsp; $($if last pulse positive$)$&nbsp; or&nbsp;  "'''0 0 0''' –"&nbsp; $($if last pulse negative$)$&nbsp; are selected.
  
  
 +
The graph above shows the binary signal&nbsp; $q(t)$&nbsp; and the signal&nbsp; $a(t)$&nbsp; after AMI coding.&nbsp; The HDB3 signal is denoted by&nbsp; $c(t)$.&nbsp;
  
  
''Hinweise:''
 
  
*Die Aufgabe gehört zum Kapitel&nbsp; [[Examples_of_Communication_Systems/ISDN–Primärmultiplexanschluss|ISDN–Primärmultiplexanschluss]] .  
+
 
*Informationen zu den Pseudoternärcodes finden Sie im&nbsp;  [[Digital_Signal_Transmission/Symbolweise_Codierung_mit_Pseudoternärcodes|Symbolweise Codierung mit Pseudoternärcodes]]&nbsp; von „Digitalsignalübertragung”.
+
 
 +
Notes:
 +
 
 +
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Primary_Multiplex_Connection|"ISDN Primary Multiplex Connection"]] .  
 +
*Information about the pseudo-ternary codes can be found in the section&nbsp;  [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"Symbolwise Coding with Pseudo-Ternary Codes"]]&nbsp; of "Digital Signal Transmission".
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Gesamtdatenrate des ISDN–Primärmultiplexanschlusses?
+
{What is the total data rate of the ISDN rate interface?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B} \ = \ $ { 2.048 3% } $\ \rm Mbit/s$
 
$R_{\rm B} \ = \ $ { 2.048 3% } $\ \rm Mbit/s$
  
{Welche Bitdauer&nbsp; $T_{\rm B}$&nbsp; und Rahmendauer&nbsp; $T_{\rm R}$&nbsp; ergeben sich daraus?
+
{What is the bit duration&nbsp; $T_{\rm B}$&nbsp; and frame duration&nbsp; $T_{\rm R}$?&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm B} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 
$T_{\rm B} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 125 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Wie wird der Nullblock zwischen Bit&nbsp; '''6'''&nbsp; und Bit&nbsp; '''10'''&nbsp; codiert?
+
{How is the zero block between bit&nbsp; '''6'''&nbsp; and bit&nbsp; '''10'''&nbsp; encoded?<br>Possible input values are&nbsp; $0$,&nbsp; $+1$&nbsp; and&nbsp; $&ndash;1$.
 
|type="{}"}
 
|type="{}"}
 
$c_{6} \ = \ $ { 0 3% }  
 
$c_{6} \ = \ $ { 0 3% }  
Line 53: Line 58:
 
$c_{10} \ = \ $ { 0 3% }  
 
$c_{10} \ = \ $ { 0 3% }  
  
{Wie wird der Nullblock zwischen Bit&nbsp; '''14'''&nbsp; und Bit&nbsp; '''17'''&nbsp; codiert?
+
{How is the zero block between bit&nbsp; '''14'''&nbsp; and bit&nbsp; '''17'''&nbsp; encoded?
 
|type="{}"}
 
|type="{}"}
 
$c_{14} \ = \ $ { 0 3% }  
 
$c_{14} \ = \ $ { 0 3% }  
Line 60: Line 65:
 
$c_{17} \ = \ $ { 1 3% }  
 
$c_{17} \ = \ $ { 1 3% }  
  
{Wie wird der Nullblock zwischen Bit&nbsp; '''20'''&nbsp; und Bit&nbsp; '''24'''&nbsp; codiert?
+
{How is the zero block between bit&nbsp; '''20'''&nbsp; and bit&nbsp; '''24'''&nbsp; encoded?
 
|type="{}"}
 
|type="{}"}
 
$c_{20} \ = \ $ { -1.03--0.97 }  
 
$c_{20} \ = \ $ { -1.03--0.97 }  
Line 70: Line 75:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Die Gesamtdatenrate der insgesamt $32$ Kanäle zu je $64 \ \rm kbit/s$ ergibt
+
'''(1)'''&nbsp; The total data rate of the&nbsp; $32$&nbsp; channels at&nbsp; $64 \ \rm kbit/s$&nbsp; each results in
 
:$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$
 
:$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$
  
  
'''(2)'''&nbsp; Die Bitdauer ist $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm &micro; s}$.  
+
'''(2)'''&nbsp; The bit duration is&nbsp; $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm &micro; s}$.  
*Pro Rahmen wird jeweils ein Byte (8 Bit) eines jeden Kanals übertragen. Daraus folgt:
+
*One byte (8 bits) of each channel is transmitted per frame.&nbsp; It follows that:
 
:$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm &micro; s}}\hspace{0.05cm}.$$
 
:$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Bis zum Zeitpunkt $t = 6T$ ist im AMI–codierten Signal $a(t)$ genau einmal eine „+'''1'''” aufgetreten.  
+
'''(3)'''&nbsp; By time&nbsp; $t = 6T$,&nbsp; a&nbsp; "+'''1'''"&nbsp; has occurred exactly once in the AMI-encoded signal&nbsp; $a(t)$.  
[[File:P_ID1625__Bei_A_1_5e.png|right|frame|Zusammenhang zwischen AMI-Code und HDB3-Code]]
+
[[File:EN_Bei_A_1_5e.png|right|frame|Relationship between AMI code and HDB3 code]]
*Wegen $a_{5} = –1$ wird beim HDB3–Code „'''0 0 0 0'''” ersetzt durch  (siehe Grafik)
+
*Because of&nbsp; $a_{5} = –1$,&nbsp; in the HDB3 code&nbsp; "'''0 0 0 0'''"&nbsp; is replaced by&nbsp; (see diagram)
 
:$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
 
:$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
* Dagegen wird $\underline{c_{10} = a_{10} = 0}$ durch die HDB3–Codierung nicht verändert.
+
 
 +
* In contrast,&nbsp; $\underline{c_{10} = a_{10} = 0}$&nbsp; is not changed bythe HDB3 coding.
  
  
  
'''(4)'''&nbsp; Bis einschließlich $a_{13}$ gibt es dreimal  eine „+1” &nbsp; &rArr; &nbsp;  ungerade Anzahl. Wegen $a_{12} = +1$ wird dieser Nullblock wie folgt ersetzt:
+
'''(4)'''&nbsp; Up to and including&nbsp; $a_{13}$,&nbsp; there are three times a&nbsp; "+1" &nbsp; &rArr; &nbsp;  odd number.&nbsp; Because of&nbsp; $a_{12} = +1$,&nbsp; this zero block is replaced as follows:
 
:$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$
 
:$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Im AMI–codierten Signal tritt bis einschließlich $a_{19}$ genau viermal „+1” auf &nbsp; &rArr; &nbsp; geradzahlige Anzahl.  
+
'''(5)'''&nbsp; In the AMI-encoded signal,&nbsp; "+1"&nbsp; occurs exactly four times up to and including&nbsp; $a_{19}$&nbsp; &nbsp; &rArr; &nbsp; even number.
  
*Wegen $a_{19} = +1$ lautet die Ersetzung gemäß Regel 2 auf der Angabenseite:
+
*Because of&nbsp; $a_{19} = +1$,&nbsp; the substitution according to rule 2 in the information section is:
 
:$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
 
:$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
*Das Nullsymbol $a_{24}$ bleibt unverändert: $\underline{c_{24} = 0}$.
+
*The zero symbol&nbsp; $a_{24}$&nbsp; remains unchanged: $\underline{c_{24} = 0}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 104: Line 110:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.3 ISDN–Primärmultiplexanschluss
+
[[Category:Examples of Communication Systems: Exercises|^1.3 ISDN Primary Multiplex Line^]]
^]]
 

Latest revision as of 12:03, 10 November 2022

Signals with HDB3 coding

The ISDN primary rate interface  $\rm (PRI)$  is based on the  $\rm PCM\ system \ 30/32$  and offers 

  • $30$  full-duplex basic channels, 
  • plus a signaling channel
  • and a synchronization channel.


Each of these channels,  which are transmitted in time division multiplex,  has a data rate of  $64 \ \rm kbit/s$.  A frame consists of one byte  $\rm (8$  bits$)$  of all  $32$  channels.  The duration of such a frame  $($German:  "Rahmen"$)$  is denoted by  $T_{\rm R}$,  while  $T_{\rm B}$  indicates the bit duration.

On both the  $\rm S_{\rm 2M}$ and  $\rm U_{\rm K2}$ interfaces of the ISDN system under consideration,  the   HDB3 code   is used,  which is derived from the AMI code.  This is a pseudo-ternary code  $($symbol set size  $M = 3$,  symbol duration  $T = T_{\rm B})$,  that differs from the AMI code in that long zero sequences are avoided by deliberately violating the AMI coding rule.  The following applies:

If four consecutive  "0"  symbols occur in the AMI-encoded signal  $a(t)$,  these are replaced by four other ternary symbols:

  • If an even number of  "+1"  occurred before this four-symbol block the signal  $a(t)$  and the last pulse is positive,  "0 0 0 0"  is replaced by  "– 0 0 –".  If the last pulse is negative,  "0 0 0 0"  is replaced by  "+ 0 0 +". 
  • On the other hand,  if there is an odd number of  "ones"  before this  "0 0 0 0" block,  "0 0 0 +"  $($if last pulse positive$)$  or  "0 0 0 –"  $($if last pulse negative$)$  are selected.


The graph above shows the binary signal  $q(t)$  and the signal  $a(t)$  after AMI coding.  The HDB3 signal is denoted by  $c(t)$. 



Notes:



Questions

1

What is the total data rate of the ISDN rate interface?

$R_{\rm B} \ = \ $

$\ \rm Mbit/s$

2

What is the bit duration  $T_{\rm B}$  and frame duration  $T_{\rm R}$? 

$T_{\rm B} \ = \ $

$\ \rm µ s$
$T_{\rm R} \ = \ $

$\ \rm µ s$

3

How is the zero block between bit  6  and bit  10  encoded?
Possible input values are  $0$,  $+1$  and  $–1$.

$c_{6} \ = \ $

$c_{7} \ = \ $

$c_{8} \ = \ $

$c_{9} \ = \ $

$c_{10} \ = \ $

4

How is the zero block between bit  14  and bit  17  encoded?

$c_{14} \ = \ $

$c_{15} \ = \ $

$c_{16} \ = \ $

$c_{17} \ = \ $

5

How is the zero block between bit  20  and bit  24  encoded?

$c_{20} \ = \ $

$c_{21} \ = \ $

$c_{22} \ = \ $

$c_{23} \ = \ $

$c_{24} \ = \ $


Solution

(1)  The total data rate of the  $32$  channels at  $64 \ \rm kbit/s$  each results in

$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$


(2)  The bit duration is  $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm µ s}$.

  • One byte (8 bits) of each channel is transmitted per frame.  It follows that:
$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm µ s}}\hspace{0.05cm}.$$


(3)  By time  $t = 6T$,  a  "+1"  has occurred exactly once in the AMI-encoded signal  $a(t)$.

Relationship between AMI code and HDB3 code
  • Because of  $a_{5} = –1$,  in the HDB3 code  "0 0 0 0"  is replaced by  (see diagram)
$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
  • In contrast,  $\underline{c_{10} = a_{10} = 0}$  is not changed bythe HDB3 coding.


(4)  Up to and including  $a_{13}$,  there are three times a  "+1"   ⇒   odd number.  Because of  $a_{12} = +1$,  this zero block is replaced as follows:

$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$


(5)  In the AMI-encoded signal,  "+1"  occurs exactly four times up to and including  $a_{19}$    ⇒   even number.

  • Because of  $a_{19} = +1$,  the substitution according to rule 2 in the information section is:
$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
  • The zero symbol  $a_{24}$  remains unchanged: $\underline{c_{24} = 0}$.