Difference between revisions of "Exercise 2.12: Run–Length Coding and Run–Length Limited Coding"

From LNTwww
m (Text replacement - "[File:" to "[File:")
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Weitere Quellencodierverfahren
+
{{quiz-Header|Buchseite=Information_Theory/Further_Source_Coding_Methods
 
}}
 
}}
  
[[File:P_ID2474__Inf_A_2_13_neu.png|right|frame|Tabelle zu Run–Length Coding]]
+
[[File:EN_Inf_A_2_13.png|right|frame|Table on Run-Length Coding]]
Wir betrachten eine Binärquelle mit dem Symbolvorrat  A  und  B, wobei  B  allerdings nur sehr selten auftritt.
+
We consider a binary source with the symbol set  A  and  B, where  B  however, occurs only very rarely.
  
* Ohne Quellencodierung würde man pro Quellensymbol genau ein Bit benötigen, und dementsprechend würde bei einer Quellensymbolfolge der Länge  N  für die Codebitfolge ebenfalls  $N_\text{Bit} = N$  gelten.
+
* Without source coding, exactly one bit would be needed per source symbol, and accordingly, for a source symbol sequence of length  N , the encoded sequence would also have length   $N_\text{bits} = N$.
* Entropiecodierung macht hier ohne weitere Maßnahme  (Beispiel:  Zusammenfassen mehrerer Symbole zu einem Tupel) wegen der ungünstigen Symbolwahrscheinlichkeiten wenig Sinn.
+
* Entropy coding makes little sense here without further measures  (example:  combining several symbols into a tuple)  because of the unfavourable symbol probabilities.
* Abhilfe schafft  [[Informationstheorie/Weitere_Quellencodierverfahren#Laufl.C3.A4ngencodierung_.E2.80.93_Run.E2.80.93Length_Coding|Run-Length Coding]]  (RLC), das unter dem genannten Link im Theorieteil beschrieben ist.  Zum Beispiel ergibt sich für die Symbolfolge   ABAABAAAABBAAB...   die entsprechende Ausgabe von ''Run–Lenght Coding'':   2; 3; 5; 1; 3;...
+
* The remedy is  [[Information_Theory/Weitere_Quellencodierverfahren#Run.E2.80.93Length_coding|Run-Length Coding]]  (RLC), which is described in the theory section under the link mentioned.  For example, for the symbol sequence   ABAABAAAABBAAB...   the corresponding output of  "Run–Length Coding":   2; 3; 5; 1; 3;...
* Natürlich muss man die Längen  L1=2,  L2=3, ...  der einzelnen, jeweils durch  B  getrennten Substrings vor der Übertragung binär darstellen.  Verwendet man für alle  $L_i$  jeweils  $D = 3$  (Bit), so erhält man die RLC–Binärfolge
+
* Of course, the lengths  L1=2,  L2=3, ...  of the individual substrings, each separated by  B , must be represented in binary before transmission.  If one uses  $D = 3$  (bit) for all  $L_i$  one obtains the RLC binary symbol sequence
 
:010'011'101'001'011'...
 
:010'011'101'001'011'...
  
Die Grafik zeigt das  das zu analysierende RLC–Ergebnis.  In Spalte 2 und 3 sind die Substringlängen  Li  binär bzw. dezimal angegeben und in Spalte 4 in kumulierter Form  (Werte von Spalte 3 aufsummiert).
+
The graph shows the RLC result to be analyzed.  Columns 2 and 3 show the substring lengths  Li  in binary and decimal, respectively, and column 4 shows them in cumulative form  (values from column 3 added up).
  
*Ein Problem von ''Run-Length Coding''  (RLC) ist der  unbegrenzte Wertebereich der Größen  Li.  Mit  D=3  kann kein Wert  Li>7  dargestellt werden und mit  D=2  lautet die Beschränkung  1Li3.
+
*One problem of  "Run-Length Coding"  (RLC) is the unlimited range of values of the quantities  Li.  With  D=3,  no value  Li>7  can be represented and with  D=2,  the restriction is  1Li3.
  
*Das Problem umgeht man mit <i>Run&ndash;Length Limited Coding</i>&nbsp; (RLLC).&nbsp; Ist ein Wert&nbsp; Li2D, so ersetzt man&nbsp; Li&nbsp; durch ein Sonderzeichen&nbsp; <b>S</b>&nbsp; und die Differenz&nbsp; Li2D+1.&nbsp; Beim RLLC&ndash;Decoder wird dieses Sonderzeichen&nbsp; <b>S</b>&nbsp; wieder expandiert.
+
*The problem is circumvented with&nbsp; "Run&ndash;Length Limited Coding"&nbsp; (RLLC).&nbsp; If a value is&nbsp; Li2D,&nbsp; one replaces&nbsp; Li&nbsp; with a special character&nbsp; <b>S</b>&nbsp; and the difference&nbsp; Li2D+1.&nbsp; With the RLLC decoder, this special character&nbsp; <b>S</b>&nbsp; is expanded again.
  
  
Line 25: Line 25:
  
  
''Hinweise:''
+
Hints:  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Weitere_Quellencodierverfahren|Weitere Quellencodierverfahren]].
+
*This exercise belongs to the chapter&nbsp; [[Information_Theory/Further_Source_Coding_Methods|Further source coding methods]].
*Insbesondere wird  Bezug genommen auf die Seite&nbsp; [[Informationstheorie/Weitere_Quellencodierverfahren#Laufl.C3.A4ngencodierung_.E2.80.93_Run.E2.80.93Length_Coding|Lauflängencodierung &ndash; Run-Length Coding]].
+
*In particular, reference is made to the section&nbsp; [[Information_Theory/Further_Source_Coding_Methods#Run.E2.80.93Length_coding|Run-Length Coding]].
 
   
 
   
  
  
 
{{GraueBox|
 
{{GraueBox|
TEXT=$\text{RLLC-Beispiel}$:&nbsp; Wir gehen wieder von obiger Folge und dem Parameter&nbsp; D=2&nbsp; aus:
+
TEXT=$\text{RLLC Example}$:&nbsp; We again assume the above sequence and the parameter&nbsp; D=2&nbsp;:
* Quellensymbolfolge: &nbsp;&nbsp; ABAABAAAABBAAB...
+
* Source symbol sequence: &nbsp;&nbsp; ABAABAAAABBAAB...
* RLC&ndash;Dezimalfolge: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''2; 3; 5; 1; 3;''' ...
+
* RLC decimal sequence: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;'''2; 3; 5; 1; 3;''' ...
* RLLC&ndash;Dezimalfolge: &nbsp;&nbsp;&nbsp; '''2;&nbsp; 3;&nbsp;'''<font color="#cc0000"><span style="font-weight: bold;"> S;</span></font>'''&nbsp;2;&nbsp; 1;&nbsp; 3;''' ...
+
* RLLC decimal sequence: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''2;&nbsp; 3;&nbsp;'''<font color="#cc0000"><span style="font-weight: bold;"> S;</span></font>'''&nbsp;2;&nbsp; 1;&nbsp; 3;''' ...
* RLLC&ndash;Binärfolge: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''01&prime;11&prime;''' <font color="#cc0000"><span style="font-weight: bold;">00&prime;</span></font>'''10&prime;01&prime;11&prime;'''...
+
* RLLC binary sequence: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; '''10&prime;11&prime;''' <font color="#cc0000"><span style="font-weight: bold;">00&prime;</span></font>'''10&prime;01&prime;11&prime;'''...
  
  
Man erkennt:  
+
You can see:
*Das Sonderzeichen&nbsp; <b>S</b>&nbsp; ist hier als&nbsp; <b>00</b>&nbsp; binär&ndash;codiert.&nbsp; Dies ist nur ein Beispiel &ndash; es muss nicht so sein.  
+
*The special character&nbsp; <b>S</b>&nbsp; is binary-coded here as&nbsp; <b>00</b>&nbsp;.&nbsp; This is only an example &ndash; it does not have to be like this.
*Da mit&nbsp; D=2&nbsp; für alle echten RLC&ndash;Werte&nbsp; 1Li3&nbsp; gilt, erkennt der Decoder das Sonderzeichen&nbsp; '''00'''.
+
*Since with&nbsp; D=2&nbsp; for all real RLC values&nbsp; 1Li3&nbsp;, the decoder recognizes the special character&nbsp; '''00'''.
*Er  ersetzt dieses wieder durch&nbsp; 2D1&nbsp;  (im Beispiel drei)&nbsp; A&ndash;Symbole.}}
+
*It replaces this again with&nbsp; 2D1&nbsp;  (three in the example)&nbsp; A&ndash;symbols.}}
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Bit würde man&nbsp; <u>ohne Quellencodierung</u>&nbsp; benötigen, also mit der Zuordnung&nbsp; A &nbsp; &#8594; &nbsp;<b>0</b>&nbsp; und&nbsp; B &nbsp; &#8594; &nbsp;<b>1</b>?
+
{How many bits would be needed&nbsp; <u>without source coding</u>&nbsp;, i.e. with the assignment&nbsp; A &nbsp; &#8594; &nbsp;<b>0</b>&nbsp; and&nbsp; B &nbsp; &#8594; &nbsp;<b>1</b>?
 
|type="{}"}
 
|type="{}"}
$N_\text{Bit} \ = \ $  { 1250 }
+
$N_\text{bits} \ = \ $  { 1250 }
  
  
{Wie groß ist die relative Häufigkeit des Symbols&nbsp; B?
+
{What is the relative frequency of symbol&nbsp; B?
 
|type="{}"}
 
|type="{}"}
 
hB =  { 2 3% }  %
 
hB =  { 2 3% }  %
  
  
{Wie viele Bit benötigt man für&nbsp; <u>Run&ndash;Length Coding</U>&nbsp; (RLC)&nbsp; nach der angegebenen Tabelle mit acht Bit pro Codewort&nbsp; (D=8)?
+
{How many bits are needed for&nbsp; <u>Run&ndash;Length Coding</U>&nbsp; (RLC)&nbsp; according to the given table with eight bits per code word&nbsp; (D=8)?
 
|type="{}"}
 
|type="{}"}
$N_\text{Bit} \ = \ $ { 200 }  
+
$N_\text{bits} \ = \ $ { 200 }  
  
  
{Ist hier&nbsp; <u>Run&ndash;Length Coding</u>&nbsp; mit sieben Bit&ndash;Codeworten&nbsp; (D=7)&nbsp; möglich?
+
{Is&nbsp; <u>Run&ndash;Length Coding</u>&nbsp; with seven bit code words&nbsp; (D=7)&nbsp; possible here?
 
|type="()"}
 
|type="()"}
- Ja.
+
- Yes.
+ Nein.
+
+ No.
  
  
{Wie viele Bit benötigt man für&nbsp; <u>Run&ndash;Length Limited Coding</U>&nbsp; (RLLC)&nbsp; mit sieben Bit pro Codewort&nbsp; (D=7)?
+
{How many bits are needed for&nbsp; <u>Run&ndash;Length Limited Coding</U>&nbsp; (RLLC)&nbsp; with seven bits per code word&nbsp; (D=7)?
 
|type="{}"}
 
|type="{}"}
$N_\text{Bit} \ = \ $ { 182 }
+
$N_\text{bits} \ = \ $ { 182 }
  
  
{Wie viele Bit benötigt man für&nbsp; <u>Run&ndash;Length Limited Coding</u>&nbsp; (RLLC)&nbsp; mit sechs Bit pro Codewort&nbsp; (D=6)?
+
{How many bits are needed for&nbsp; <u>Run&ndash;Length Limited Coding</u>&nbsp; (RLLC)&nbsp; with six bits per code word&nbsp; (D=6)?
 
|type="{}"}
 
|type="{}"}
$N_\text{Bit} \ = \ ${ 204 }
+
$N_\text{bits} \ = \ ${ 204 }
  
  
Line 83: Line 83:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Binärfolge besteht aus&nbsp; N=1250&nbsp; Binärsymbolen (ablesbar aus der letzten Spalte in der Tabelle).&nbsp; Damit benötigt man ohne Codierung ebenso viele Bit:  
+
'''(1)'''&nbsp; The binary sequence consists of&nbsp; N=1250&nbsp; binary symbols&nbsp; (can be read from the last column in the table).&nbsp;  
:$$N_\text{Bit}\hspace{0.15cm}\underline{= 1250}.$$
+
*This means that the same number of bits is needed without coding:
 +
:$$N_\text{bits}\hspace{0.15cm}\underline{= 1250}.$$
  
  
'''(2)'''&nbsp; Die gesamte Symbolfolge der Länge&nbsp; N=1250&nbsp; beinhaltet&nbsp; NB=25&nbsp; Symbole&nbsp; B&nbsp; und somit&nbsp; NA=1225&nbsp; Symbole&nbsp; A.&nbsp;
+
'''(2)'''&nbsp; The entire symbol sequence of length&nbsp; N=1250&nbsp; contains&nbsp; NB=25&nbsp; symbols&nbsp; B&nbsp; and thus&nbsp; NA=1225&nbsp; symbols&nbsp; A.&nbsp;
*Die Anzahl&nbsp; NB&nbsp; der Symbole&nbsp; B&nbsp; ist dabei gleich der Zeilenzahl in der vorne angegebenen Tabelle.   
+
*The number&nbsp; NB&nbsp; of symbols&nbsp; B&nbsp; is equal to the number of rows in the table given at the front.   
*Damit gilt für die relative Häufigkeit&nbsp; von&nbsp; B:
+
*Thus the following applies to the relative frequency of symbol&nbsp; B:
 
:hB=NBN=251250=0.02_=2%.
 
:hB=NBN=251250=0.02_=2%.
  
  
'''(3)'''&nbsp; Wir betrachten nun&nbsp; <i>Run&ndash;Length Coding</i>&nbsp; (RLC), wobei jeder Abstand zwischen zwei&nbsp; B&ndash;Symbolen mit acht Bit dargestellt wird&nbsp; (D=8).  
+
'''(3)'''&nbsp; We now consider&nbsp; "Run&ndash;Length Coding"&nbsp; (RLC), where each distance between two&nbsp; B&ndash;symbols is represented by eight bits&nbsp; (D=8).  
*Damit ergibt sich mit&nbsp; NB=25:
+
*Thus, with&nbsp; NB=25, we get:
:$$N_{\rm Bit} = N_{\rm B} \cdot 8 \hspace{0.15cm}\underline{= 200} \hspace{0.05cm}.$$
+
:$$N_{\rm bits} = N_{\rm B} \cdot 8 \hspace{0.15cm}\underline{= 200} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; RLC&nbsp;  mit&nbsp; D=7&nbsp; erlaubt für&nbsp; Li&nbsp; nur Werte zwischen&nbsp; 1&nbsp; und&nbsp; 271=127.  
+
'''(4)'''&nbsp; RLC&nbsp;  with&nbsp; D=7&nbsp;only allows values between&nbsp; 1&nbsp; und&nbsp; $2^7-1 =127for&nbsp;L_i$.  
*Der Eintrag &bdquo;226&rdquo; in Zeile 19 ist aber größer &nbsp; &nbsp; &#8658; &nbsp; &nbsp; <u>NEIN</u>.
+
*However, the entry&nbsp; "226"&nbsp; in line 19 is greater &nbsp; &nbsp; &#8658; &nbsp; &nbsp; <u>NO</u>.
  
  
'''(5)'''&nbsp; Auch bei Run&ndash;Length Limited Coding&nbsp;  (RLLC)&nbsp; sind für die &bdquo;echten&rdquo; Abstände&nbsp; Li&nbsp; mit&nbsp; $D = 7$&nbsp; nur Werte bis&nbsp; $127$&nbsp; zulässig.  
+
'''(5)'''&nbsp; Even with Run&ndash;Length Limited Coding&nbsp;  (RLLC),&nbsp; only values up to&nbsp; 127&nbsp; are permitted for the&nbsp; "real"&nbsp; distances&nbsp; $L_i$&nbsp; with&nbsp; $D = 7$.
*Der Eintrag &bdquo;226&rdquo; in Zeile 19 wird bei&nbsp;  RLLC&nbsp; ersetzt durch
+
*The entry&nbsp; "226"&nbsp; in line 19 is replaced by the following for&nbsp;  RLLC:
  
:* Zeile 19a: &nbsp;  <b>S</b> = <b>0000000</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Sonderzeichen, steht für &bdquo;+ 127&rdquo;,
+
:* Line 19a: &nbsp;  <b>S</b> = <b>0000000</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; special character, stands for "+127",
  
:* Zeile 19b: &nbsp;  <b>1100011</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Dezimal 99.
+
:* Line 19b: &nbsp;  <b>1100011</b> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; decimal 99.
  
*Damit erhält man insgesamt 26 Worte zu je sieben Bit:
+
*This gives a total of 26 words of seven bits each:
:$$N_{\rm Bit} = 26 \cdot 7 \hspace{0.15cm}\underline{= 182} \hspace{0.05cm}.$$
+
:$$N_{\rm bits} = 26 \cdot 7 \hspace{0.15cm}\underline{= 182} \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Nun müssen bei&nbsp; RLLC&nbsp; gegenüber&nbsp; RLC&nbsp; (siehe Tabelle) folgende Änderungen vorgenommen werden:
+
'''(6)'''&nbsp; With&nbsp;  D=6&nbsp; the following changes have to be made in&nbsp; RLLC&nbsp; compared to&nbsp; RLC&nbsp; (see table):
  
* Zeile &nbsp;&nbsp;1: &nbsp; 122 = 1 &middot; 63 + 59 &nbsp;&nbsp;(ein Wort mehr),
+
* Line &nbsp;&nbsp;1: &nbsp; 122 = 1 &middot; 63 + 59 &nbsp;&nbsp;(one word more),
  
* Zeile &nbsp;&nbsp;6: &nbsp;&nbsp;&nbsp; 70 = 1 &middot; 63 + 7 &nbsp;&nbsp;&nbsp;&nbsp;(ein Wort mehr),
+
* Line &nbsp;&nbsp;6: &nbsp;&nbsp;&nbsp; 70 = 1 &middot; 63 + 7 &nbsp;&nbsp;&nbsp;&nbsp;(one word more),
  
* Zeile &nbsp;&nbsp;7: &nbsp;&nbsp;&nbsp; 80 = 1 &middot; 63 + 17 &nbsp;&nbsp;(ein Wort mehr),
+
* Line &nbsp;&nbsp;7: &nbsp;&nbsp;&nbsp; 80 = 1 &middot; 63 + 17 &nbsp;&nbsp;(one word more),
  
* Zeile 12: &nbsp;&nbsp;&nbsp; $79 = 1 &middot; 63 + 18$ &nbsp;&nbsp;(ein Wort mehr),
+
* Line 12: &nbsp;&nbsp;&nbsp; $79 = 1 &middot; 63 + 16$ &nbsp;&nbsp;(one word more),
  
* Zeile 13: &nbsp;&nbsp;&nbsp; 93 = 1 &middot; 63 + 30 &nbsp;&nbsp;(ein Wort mehr),
+
* Line 13: &nbsp;&nbsp;&nbsp; 93 = 1 &middot; 63 + 30 &nbsp;&nbsp;(one word more),
  
* Zeile 19: &nbsp; 226 = 3 &middot; 63 + 37  &nbsp;&nbsp;(drei Worte mehr),
+
* Line 19: &nbsp; 226 = 3 &middot; 63 + 37  &nbsp;&nbsp;(one word more),
  
* Zeile 25: &nbsp;&nbsp;&nbsp; 97 = 1 &middot; 63 + 34  &nbsp;&nbsp;(ein Wort mehr).
+
* Line 25: &nbsp;&nbsp;&nbsp; 97 = 1 &middot; 63 + 34  &nbsp;&nbsp;(one word more).
  
  
Damit erhält man insgesamt 34 Worte zu je sechs Bit:
+
This gives a total of&nbsp; $25+9=34$&nbsp; words of six bits each:
:$$N_{\rm Bit} = 34 \cdot 6 \hspace{0.15cm}\underline{= 204} \hspace{0.05cm},$$
+
:$$N_{\rm bits} = 34 \cdot 6 \hspace{0.15cm}\underline{= 204} \hspace{0.05cm},$$
also ein schlechteres Ergebnis als mit sieben Bit gemäß Teilaufgabe '''(5)'''.
+
i.e. a worse result than with seven bits according to subtask '''(5)'''.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^2.4 Weitere Quellencodierverfahren^]]
+
[[Category:Information Theory: Exercises|^2.4 Further Source Coding Methods^]]

Latest revision as of 01:34, 13 November 2022

Table on Run-Length Coding

We consider a binary source with the symbol set  A  and  B, where  B  however, occurs only very rarely.

  • Without source coding, exactly one bit would be needed per source symbol, and accordingly, for a source symbol sequence of length  N , the encoded sequence would also have length   Nbits=N.
  • Entropy coding makes little sense here without further measures  (example:  combining several symbols into a tuple)  because of the unfavourable symbol probabilities.
  • The remedy is  Run-Length Coding  (RLC), which is described in the theory section under the link mentioned.  For example, for the symbol sequence   ABAABAAAABBAAB...   the corresponding output of  "Run–Length Coding":   2; 3; 5; 1; 3;...
  • Of course, the lengths  L1=2L2=3, ...  of the individual substrings, each separated by  B , must be represented in binary before transmission.  If one uses  D=3  (bit) for all  Li  one obtains the RLC binary symbol sequence
010'011'101'001'011'...

The graph shows the RLC result to be analyzed.  Columns 2 and 3 show the substring lengths  Li  in binary and decimal, respectively, and column 4 shows them in cumulative form  (values from column 3 added up).

  • One problem of  "Run-Length Coding"  (RLC) is the unlimited range of values of the quantities  Li.  With  D=3,  no value  Li>7  can be represented and with  D=2,  the restriction is  1Li3.
  • The problem is circumvented with  "Run–Length Limited Coding"  (RLLC).  If a value is  Li2D,  one replaces  Li  with a special character  S  and the difference  Li2D+1.  With the RLLC decoder, this special character  S  is expanded again.





Hints:


RLLC Example:  We again assume the above sequence and the parameter  D=2 :

  • Source symbol sequence:    ABAABAAAABBAAB...
  • RLC decimal sequence:          2; 3; 5; 1; 3; ...
  • RLLC decimal sequence:       2;  3;  S; 2;  1;  3; ...
  • RLLC binary sequence:          10′11′ 00′10′01′11′...


You can see:

  • The special character  S  is binary-coded here as  00 .  This is only an example – it does not have to be like this.
  • Since with  D=2  for all real RLC values  1Li3 , the decoder recognizes the special character  00.
  • It replaces this again with  2D1  (three in the example)  A–symbols.


Questions

1

How many bits would be needed  without source coding , i.e. with the assignment  A   →  0  and  B   →  1?

Nbits = 

2

What is the relative frequency of symbol  B?

hB = 

 %

3

How many bits are needed for  Run–Length Coding  (RLC)  according to the given table with eight bits per code word  (D=8)?

Nbits = 

4

Is  Run–Length Coding  with seven bit code words  (D=7)  possible here?

Yes.
No.

5

How many bits are needed for  Run–Length Limited Coding  (RLLC)  with seven bits per code word  (D=7)?

Nbits = 

6

How many bits are needed for  Run–Length Limited Coding  (RLLC)  with six bits per code word  (D=6)?

Nbits = 


Solution

(1)  The binary sequence consists of  N=1250  binary symbols  (can be read from the last column in the table). 

  • This means that the same number of bits is needed without coding:
Nbits=1250_.


(2)  The entire symbol sequence of length  N=1250  contains  NB=25  symbols  B  and thus  NA=1225  symbols  A

  • The number  NB  of symbols  B  is equal to the number of rows in the table given at the front.
  • Thus the following applies to the relative frequency of symbol  B:
hB=NBN=251250=0.02_=2%.


(3)  We now consider  "Run–Length Coding"  (RLC), where each distance between two  B–symbols is represented by eight bits  (D=8).

  • Thus, with  NB=25, we get:
Nbits=NB8=200_.


(4)  RLC  with  D=7 only allows values between  1  und  271=127 for  Li.

  • However, the entry  "226"  in line 19 is greater     ⇒     NO.


(5)  Even with Run–Length Limited Coding  (RLLC),  only values up to  127  are permitted for the  "real"  distances  Li  with  D=7.

  • The entry  "226"  in line 19 is replaced by the following for  RLLC:
  • Line 19a:   S = 0000000   ⇒   special character, stands for "+127",
  • Line 19b:   1100011   ⇒   decimal 99.
  • This gives a total of 26 words of seven bits each:
Nbits=267=182_.


(6)  With  D=6  the following changes have to be made in  RLLC  compared to  RLC  (see table):

  • Line   1:   122=1·63+59   (one word more),
  • Line   6:     70=1·63+7     (one word more),
  • Line   7:     80=1·63+17   (one word more),
  • Line 12:     79=1·63+16   (one word more),
  • Line 13:     93=1·63+30   (one word more),
  • Line 19:   226=3·63+37   (one word more),
  • Line 25:     97=1·63+34   (one word more).


This gives a total of  25+9=34  words of six bits each:

Nbits=346=204_,

i.e. a worse result than with seven bits according to subtask (5).