Difference between revisions of "Aufgaben:Exercise 3.10: Metric Calculation"

From LNTwww
 
Line 78: Line 78:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  At all nodes $S_{\mu}$ a decision must be made between the two incoming branches. The branch that led to the (minimum) error metric ${\it \Gamma}_5(S_{\mu})$ is then selected in each case. With $\underline{y}_5 = (01)$ one obtains:
+
'''(1)'''  At all nodes  $S_{\mu}$  a decision must be made between the two incoming branches.  The branch that led to the (minimum) error metric  ${\it \Gamma}_5(S_{\mu})$  is then selected in each case.  With  $\underline{y}_5 = (01)$  one obtains:
 
:$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
Line 84: Line 84:
 
:$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
 
:$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
The left graph shows the final evaluated ${\it \Gamma}_i(S_{\mu})$ trellis.
+
[[File:P_ID2682__KC_A_3_10c_neu.png|right|frame|Evaluated trellis diagrams]]
 
+
<br><br><br><br>
[[File:P_ID2682__KC_A_3_10c_neu.png|center|frame|Evaluated trellis diagrams]]
+
The left sketch in the graph shows the final evaluated ${\it \Gamma}_i(S_{\mu})$ trellis.
 
+
<br clear=all>
 
+
'''(2)'''&nbsp; At time&nbsp; $i = 6$&nbsp; the termination is already effective and there are only two branch metrics left.&nbsp; For these one obtains with&nbsp; $\underline{y}_6 = (01)$:
'''(2)'''&nbsp; At time $i = 6$ the termination is already effective and there are only two branch metrics left. For these one obtains with $\underline{y}_6 = (01)$:
 
 
:$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
 
:$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
Line 97: Line 96:
 
:$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
 
:$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
In the BSC model, one can infer from ${\it \Gamma}_7(S_{\mu}) = 3$ that three transmission errors occurred &nbsp; &#8658; &nbsp; <u>solutions 1 and 3</u>.
+
*With the BSC model,&nbsp; one can infer from&nbsp; ${\it \Gamma}_7(S_{\mu}) = 3$&nbsp; that three transmission errors occurred &nbsp; &#8658; &nbsp; <u>solutions 1 and 3</u>.
 +
 
  
 +
'''(4)'''&nbsp; Correct are the &nbsp; <u>statements 1 and 2</u>:
 +
*Maximizing the correlation branch metrics&nbsp; ${\it \Lambda}_i(S_{\mu})$&nbsp; according to the right sketch in the above graph gives the same result as minimizing the Hamming branch metrics ${\it \Gamma}_i(S_{\mu})$ shown on the left.
  
'''(4)'''&nbsp; Correct are <u>statements 1 and 2</u>:
+
*Also,&nbsp; the surviving and deleted branches are identical in both graphs.
*Maximizing the branch metrics ${\it \Lambda}_i(S_{\mu})$ according to the right sketch in the above graph gives the same result as minimizing the branch metrics ${\it \Gamma}_i(S_{\mu})$ shown on the left. Also, the surviving and deleted branches are identical in both graphs.
+
 
*The given equation is also correct, which is shown here only on the example $i = 7$:
+
*The given equation is also correct,&nbsp; which is shown here only on the example&nbsp; $i = 7$:
 
:$${\it \Lambda}_7(S_0)) =  2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
 
:$${\it \Lambda}_7(S_0)) =  2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
*The last statement is false. Rather applies&nbsp; $&#9001;x_i', \, y_i&#9002; &#8712; \{&ndash;2, \, 0, \, +2\}$.  
+
*The last statement is false.&nbsp; Rather applies&nbsp; $&#9001;x_i', \, y_i&#9002; &#8712; \{&ndash;2, \, 0, \, +2\}$.  
 
 
  
Hints: In [[Aufgaben:Exercise_3.11:_Viterbi_Path_Finding| "Exercise 3.11"]], path finding is demonstrable for the same example, assuming ${\it \Lambda}_i(S_{\mu})$&ndash;metrics as shown in the right graph.
+
*In&nbsp; [[Aufgaben:Exercise_3.11:_Viterbi_Path_Finding| $\text{Exercise 3.11}$]],&nbsp; the path finding will be demonstrated for the same example,&nbsp; assuming ${\it \Lambda}_i(S_{\mu})$&nbsp; metrics as shown in the right graph.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 14:53, 18 November 2022

Only partially evaluated trellis

In the  $\text{theory section}$  of this chapter,  the calculation of the branch metrics  ${\it \Gamma}_i(S_{\mu})$  has been discussed in detail,  based on the Hamming distance   $d_{\rm H}(\underline{x}\hspace{0.05cm}', \ \underline{y}_i)$   between

  • the possible code words   $\underline{x}\hspace{0.05cm}' ∈ \{00, \, 01, \, 10, \, 11\}$ 
  • and the 2–bit–words  $\underline{y}_i$  received at time  $i$.


The exercise deals exactly with this topic.  In the adjacent graph

  • the considered trellis is shown  – valid for the code with rate  $R = 1/2$,   memory  $m = 2$   and 
$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2),$$
  • the received words  $\underline{y}_1 = (01), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \underline{y}_7 = (11)$  are indicated in the rectangles,
  • all branch metrics  ${\it \Gamma}_0(S_{\mu}), \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ {\it \Gamma}_4(S_{\mu})$  are already entered.


For example,  the branch metric  ${\it \Gamma}_4(S_0)$  with  $\underline{y}_4 = (01)$  as the minimum of the two comparison values

  • ${\it \Gamma}_3(S_0) + d_{\rm H}((00), \ (01)) = 3 + 1 = 4$,  and
  • ${\it \Gamma}_3(S_2) + d_{\rm H}((11), \ (01)) = 2 + 1 = 3$.


The surviving branch  – here from   ${\it \Gamma}_3(S_2)$   to   ${\it \Gamma}_4(S_0)$   – is drawn solid,  the eliminated branch from   ${\it \Gamma}_3(S_0)$   to   ${\it \Gamma}_4(S_0)$   dotted.  Red arrows represent the information bit  $u_i = 0$,  blue arrows  $u_i = 1$.

In subtask  (4)  shall be worked out the relationship between

  • the  ${\it \Gamma}_i(S_{\mu})$  minimization and
  • the  ${\it \Lambda}_i(S_{\mu})$  maximization.


Here,  we refer to the nodes  ${\it \Lambda}_i(S_{\mu})$  as  "correlation metrics",  where the metric increment over the predecessor nodes results from the correlation value  $〈\underline{x}_i\hspace{0.05cm}', \, \underline{y}_i 〉$.  For more details on this topic,  see the following theory sections:

  1. "Relationship between Hamming distance and correlation"
  2. "Viterbi algorithm based on correlation and metrics"
  3. "Viterbi decision for non–terminated convolutional codes".



Hints:

  • For the time being,  the search of surviving paths is not considered. 



Questions

1

What are the branch metrics for time  $i = 5$?

${\it \Gamma}_5(S_0) \ = \ $

${\it \Gamma}_5(S_1) \ = \ $

${\it \Gamma}_5(S_2) \ = \ $

${\it \Gamma}_5(S_3) \ = \ $

2

What are the branch metrics for time  $i = 6$?

${\it \Gamma}_6(S_0) \ = \ $

${\it \Gamma}_6(S_2) \ = \ $

3

What is the final value of this trellis based on  ${\it \Gamma}_i(S_{\mu})$?

It holds  ${\it \Gamma}_7(S_0) = 3$.
This final value suggests one error-free transmission.
This final value suggests three transmission errors.

4

Which statements are true for the  ${\it \Lambda}_i(S_{\mu})$  evaluation?

The correlation metrics  ${\it \Lambda}_i(S_{\mu})$  provide the same information as  ${\it \Gamma}_i(S_{\mu})$.
For all nodes,  ${\it \Lambda}_i(S_{\mu}) = 2 \cdot \big [i \, –{\it \Gamma}_i(S_{\mu})\big ]$.
For the metric increments,  $〈 \underline{x}_i', \, \underline{y}_i 〉 ∈ \{0, \, 1, \, 2\}$.


Solution

(1)  At all nodes  $S_{\mu}$  a decision must be made between the two incoming branches.  The branch that led to the (minimum) error metric  ${\it \Gamma}_5(S_{\mu})$  is then selected in each case.  With  $\underline{y}_5 = (01)$  one obtains:

$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] = {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
Evaluated trellis diagrams





The left sketch in the graph shows the final evaluated ${\it \Gamma}_i(S_{\mu})$ trellis.
(2)  At time  $i = 6$  the termination is already effective and there are only two branch metrics left.  For these one obtains with  $\underline{y}_6 = (01)$:

$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$


(3)  The final value results to

$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] ={\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  • With the BSC model,  one can infer from  ${\it \Gamma}_7(S_{\mu}) = 3$  that three transmission errors occurred   ⇒   solutions 1 and 3.


(4)  Correct are the   statements 1 and 2:

  • Maximizing the correlation branch metrics  ${\it \Lambda}_i(S_{\mu})$  according to the right sketch in the above graph gives the same result as minimizing the Hamming branch metrics ${\it \Gamma}_i(S_{\mu})$ shown on the left.
  • Also,  the surviving and deleted branches are identical in both graphs.
  • The given equation is also correct,  which is shown here only on the example  $i = 7$:
$${\it \Lambda}_7(S_0)) = 2 \cdot \big [i - {\it \Gamma}_7(S_0) \big ] = 2 \cdot \big [7 - 3 \big ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$
  • The last statement is false.  Rather applies  $〈x_i', \, y_i〉 ∈ \{–2, \, 0, \, +2\}$.
  • In  $\text{Exercise 3.11}$,  the path finding will be demonstrated for the same example,  assuming ${\it \Lambda}_i(S_{\mu})$  metrics as shown in the right graph.