Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes"

From LNTwww
 
(33 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung von Faltungscodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Convolutional_Codes}}
  
[[File:P_ID2678__KC_Z_3_10.png|right|frame|Betrachtetes Systemmodell]]
+
[[File:EN_KC_Z_3_10.png|right|frame|Overall system model,  given for this exercise]]
Der Viterbi–Algorithmus stellt die bekannteste Realisierungsform für die Maximum–Likelihood–Decodierung eines Faltungscodes dar. Wir gehen hier von folgendem Modell aus:
+
The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.  We assume here the following model:
* Die Informationssequenz u_ wird durch einen Faltungscode in die Codesequenz x_ umgesetzt. Es gelte u_i ∈ \{0, \, 1\}. Dagegen werden die Codesymbole bipolar dargestellt: x_i ∈ \{–1, \, +1\}.
+
* The information sequence  u_  is converted into the code sequence  x_  by a convolutional code.  
* Der Kanal sei durch das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| BSC–Modell]] gegeben  ⇒  y_i ∈ \{–1, \, +1\} oder es wird der [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang| AWGN–Kanal]] vorausgesetzt  ⇒  reellwertige yi.
+
 
* Bei gegebener Empfangssequenz y_ entscheidet sich der Viterbi–Algorithmus für die Codesequenz z_ entsprechend
+
*It is valid  u_i ∈ \{0, \, 1\}.  In contrast,  the code symbols are represented bipolar   ⇒   x_i ∈ \{–1, \, +1\}.
 +
 
 +
* Let the channel be given by the models  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{BSC}$]]    ⇒   received values  y_i ∈ \{–1, \, +1\}  or  [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_binary_input| $\text{AWGN}$]]   ⇒ yi  real-valued.
 +
 
 +
* Given a received sequence  y_  the Viterbi algorithm decides for the sequence  z_  according to
 
:z_=argmax
 
:\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.
  
 +
*This corresponds to the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum a posteriori"]]  \rm (MAP)  criterion.  If all information sequences  \underline{u}  are equally likely,  this transitions to the somewhat simpler  [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum likelihood criterion"]]  \rm (ML):
 +
:\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.
  
Dies entspricht dem [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| Maximum–a–posteriori]] (MAP)–Kriterium. Sind die Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-a-posteriori.E2.80.93_und_Maximum-Likelihood.E2.80.93Kriterium| Maximum–Likelihood–Kriterium]] über:
+
*As a further result,  the Viterbi algorithm additionally outputs the sequence  $\underline{v}$  as an estimate for the information sequence  $\underline{u}$.
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y}  \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
 
  
Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz \underline{\upsilon} als Schätzung für die Informationssequenz \underline{u} aus.
 
  
In dieser Aufgabe soll der Zusammenhang zwischen der [[Hamming–Distanz]] d_{\rm H}(\underline{x}, \, \underline{y}) sowie der [[Euklidischen Distanz]]
+
In this exercise,  you should determinethe relationship between the  [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| $\text{Hamming distance}$]]  d_{\rm H}(\underline{x}, \, \underline{y})  and the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel|\text{Euclidean distance}]]
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 
:$$d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
+
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.$$
 +
 
 +
Then,  the above maximum likelihood criterion is to be formulated with
 +
* the Hamming distance  d_{\rm H}(\underline{x}, \, \underline{y}),
 +
 
 +
* the Euclidean distance  d_{\rm E}(\underline{x}, \, \underline{y}),  and
 +
 
 +
* the  [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation|\text{correlation value}]]  〈 x \cdot y 〉.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
* This exercise refers to the chapter&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes| "Decoding of Convolutional Codes"]].
 +
 +
* Reference is made in particular to the section&nbsp; [[Channel_Coding/Decoding_of_Convolutional_Codes#Viterbi_algorithm_based_on_correlation_and_metrics|"Viterbi algorithm &ndash; based on correlation and metrics"]].
 +
 
 +
* For simplicity,&nbsp; "tilde"&nbsp; and&nbsp; "apostrophe"&nbsp; are omitted.
  
ermittelt werden. Anschließend ist das obige ML&ndash;Kriterium mit
+
* For more information on this topic,&nbsp; see the following sections in this book:
* der Hamming&ndash;Distanz d_{\rm H}(\underline{x}, \, \underline{y}),
+
:* [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "MAP and ML criterion"]],
* der Euklidischen Distanz d_{\rm E}(\underline{x}, \, \underline{y}), und
 
* dem [[Korrelationswert]] &#9001; x \cdot y &#9002; zu formulieren.
 
  
 +
:* [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_BSC_channel| "ML decision at the BSC channel"]],
  
''Hinweise:''
+
:* [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel| "ML decision at the AWGN channel"]],
* Die Aufgabe bezieht sich auf die [[Theorieseite 6]] des Kapitels .
 
* Zur Vereinfachung wird auf Tilden und Apostroph verzichtet.
 
* Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
 
** [[MAP&ndash; und ML&ndash;Kriterium]],
 
** [[ML&ndash;Entscheidung beim BSC&ndash;Kanal]],
 
** [[ML&ndash;Entscheidung beim AWGN&ndash;Kanal]],
 
** [[Decodierung linearer Blockcodes &ndash; Seite 1]].
 
  
 +
:* [[Channel_Coding/Decoding_of_Linear_Block_Codes#Block_diagram_and_requirements| "Decoding linear block codes"]].
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{How are &nbsp; d_{\rm H}(\underline{x}, \, \underline{y}) &nbsp; and &nbsp; d_{\rm E}(\underline{x}, \, \underline{y}) &nbsp; related in the BSC model?
 +
|type="()"}
 +
- &nbsp; d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})&nbsp; is valid.
 +
- &nbsp; d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})&nbsp; is valid.
 +
+ &nbsp; d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4&nbsp; is valid.
 +
 
 +
{Which of the equations describe the maximum likelihood decoding in the BSC model?&nbsp; The minimization/maximization refers alwaysto all&nbsp; \underline{x} &#8712;\mathcal{ C}.
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ \underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})},
- false
+
+ \underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})},
 +
+ \underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})},
  
{Input-Box Frage
+
{Which equation describes the maximum likelihood decision in the BSC model?
|type="{}"}
+
|type="()"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
- \underline{z} = \arg \min &#9001; \underline{x} \cdot \underline{y} &#9002;,
 +
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
 +
 
 +
{What equations apply to the maximum likelihood decision in the AWGN model?
 +
|type="[]"}
 +
- $\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})}$,
 +
+ $\underline{z} = \arg \max &#9001; \underline{x} \cdot \underline{y} &#9002;$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>proposed solution 3</u>:
'''(2)'''&nbsp;  
+
*Let the two binary sequences be &nbsp; \underline{x} &nbsp; and &nbsp; \underline{y} &nbsp; with &nbsp; x_i &#8712; \{-1, \, +1\}, \ y_i &#8712; \{-1, \, +1\}.&nbsp; Let the sequence length be&nbsp; L&nbsp; in each case.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
*The Hamming distance &nbsp; d_{\rm H}(\underline{x}, \, \underline{y}) &nbsp; gives the number of bits in which&nbsp; \underline{x}&nbsp; and&nbsp; \underline{y}&nbsp; differ,&nbsp; for which thus&nbsp; x_i \, - y_i = &plusmn;2 &nbsp; &#8658; &nbsp; (x_i \, - y_i)^2 = 4&nbsp; holds.
'''(5)'''&nbsp;  
+
 +
*Equal symbols&nbsp; (x_i = y_i)&nbsp; do not contribute to the Hamming distance and give&nbsp; (x_i \, &ndash; y_i)^2 = 0.&nbsp; According to the&nbsp; <u>solution 3</u>,&nbsp; we can therefore write:
 +
:$$ d_{\rm H}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct:
 +
*In the BSC model,&nbsp; it is common practice to select the code word&nbsp; \underline{x}&nbsp; with the smallest Hamming distance&nbsp; d_{\rm H}(\underline{x}, \, \underline{y})&nbsp; for the given received vector&nbsp; \underline{y}:
 +
:$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm H}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
 +
*But according to the subtask&nbsp; '''(1)'''&nbsp; also applies:
 +
:$$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})
 +
\hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm}
 +
d_{\rm E}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y})
 +
\hspace{0.05cm}.$$
 +
 
 +
*The factor&nbsp; 1/4&nbsp; does not matter for the minimization.&nbsp; Since&nbsp; d_{\rm E}(\underline{x}, \, \underline{y}) &#8805; 0,&nbsp; it does not matter whether the minimization is done with respect to &nbsp; d_{\rm E}(\underline{x}, \, \underline{y}) &nbsp; or &nbsp; d_{\rm E}^2(\underline{x}, \, \underline{y}).
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u>:
 +
*The square of the Euclidean distance can be expressed as follows:
 +
:$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i
 +
\hspace{0.05cm}.$$
 +
 
 +
*The first two summands are each equal to&nbsp; L&nbsp; and need not be considered for minimization.
 +
 +
*For the last expression in this equation,&nbsp; &ndash;2 \cdot &#9001; \underline{x}, \, \underline{y} &#9002;&nbsp; can be written.
 +
 +
*Due to the negative sign,&nbsp; minimization becomes maximization &nbsp; &#8658; &nbsp; <u>answer 2</u>.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 and 3</u>:
 +
*For the AWGN channel,&nbsp; unlike the BSC,&nbsp; no Hamming distance can be specified.
 +
 +
*Based on the equation
 +
:$$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x}  \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
 +
 
 +
:the same statements apply for the first and last summands as for the BSC model &ndash; see subtask&nbsp; '''(3)'''.
 +
 
 +
*For the middle summand,&nbsp; y_i = x_i + n_i&nbsp; and&nbsp; x_i &#8712; \{&ndash;1, \, +1\}&nbsp; hold:
 +
:$$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} =
 +
\hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2}
 +
\hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
 +
 
 +
*The first summand gives again&nbsp; L,&nbsp; the second is proportional to the noise power,&nbsp; and the last term vanishes since&nbsp; \underline{x}&nbsp; and&nbsp; \underline{n}&nbsp; are uncorrelated.
 +
 +
*So for minimizing&nbsp; d_{\rm E}(\underline{x}, \, \underline{y}),&nbsp; the sum over&nbsp; y_i^2&nbsp; need not be considered since there is no relation to the code sequences&nbsp; \underline{x}.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.4 Decodierung von Faltungscodes^]]
+
[[Category:Channel Coding: Exercises|^3.4 Decoding of Convolutional Codes^]]

Latest revision as of 16:57, 21 November 2022

Overall system model,  given for this exercise

The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code.  We assume here the following model:

  • The information sequence  \underline{u}  is converted into the code sequence  \underline{x}  by a convolutional code.
  • It is valid  u_i ∈ \{0, \, 1\}.  In contrast,  the code symbols are represented bipolar   ⇒   x_i ∈ \{–1, \, +1\}.
  • Given a received sequence  \underline{y}  the Viterbi algorithm decides for the sequence  \underline{z}  according to
\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.
\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.
  • As a further result,  the Viterbi algorithm additionally outputs the sequence  \underline{v}  as an estimate for the information sequence  \underline{u}.


In this exercise,  you should determinethe relationship between the  \text{Hamming distance}  d_{\rm H}(\underline{x}, \, \underline{y})  and the  \text{Euclidean distance}

d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}.

Then,  the above maximum likelihood criterion is to be formulated with

  • the Hamming distance  d_{\rm H}(\underline{x}, \, \underline{y}),
  • the Euclidean distance  d_{\rm E}(\underline{x}, \, \underline{y}),  and





Hints:

  • For simplicity,  "tilde"  and  "apostrophe"  are omitted.
  • For more information on this topic,  see the following sections in this book:


Questions

1

How are   d_{\rm H}(\underline{x}, \, \underline{y})   and   d_{\rm E}(\underline{x}, \, \underline{y})   related in the BSC model?

  d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}(\underline{x}, \, \underline{y})  is valid.
  d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})  is valid.
  d_{\rm H}(\underline{x}, \, \underline{y}) = d_{\rm E}^2(\underline{x}, \, \underline{y})/4  is valid.

2

Which of the equations describe the maximum likelihood decoding in the BSC model?  The minimization/maximization refers alwaysto all  \underline{x} ∈\mathcal{ C}.

\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})},
\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})},
\underline{z} = \arg \min {d_{\rm E}^2(\underline{x}, \, \underline{y})},

3

Which equation describes the maximum likelihood decision in the BSC model?

\underline{z} = \arg \min 〈 \underline{x} \cdot \underline{y} 〉,
\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉.

4

What equations apply to the maximum likelihood decision in the AWGN model?

\underline{z} = \arg \min {d_{\rm H}(\underline{x}, \, \underline{y})},
\underline{z} = \arg \min {d_{\rm E}(\underline{x}, \, \underline{y})},
\underline{z} = \arg \max 〈 \underline{x} \cdot \underline{y} 〉.


Solution

(1)  Correct is the  proposed solution 3:

  • Let the two binary sequences be   \underline{x}   and   \underline{y}   with   x_i ∈ \{-1, \, +1\}, \ y_i ∈ \{-1, \, +1\}.  Let the sequence length be  L  in each case.
  • The Hamming distance   d_{\rm H}(\underline{x}, \, \underline{y})   gives the number of bits in which  \underline{x}  and  \underline{y}  differ,  for which thus  x_i \, - y_i = ±2   ⇒   (x_i \, - y_i)^2 = 4  holds.
  • Equal symbols  (x_i = y_i)  do not contribute to the Hamming distance and give  (x_i \, – y_i)^2 = 0.  According to the  solution 3,  we can therefore write:
d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.


(2)  All proposed solutions  are correct:

  • In the BSC model,  it is common practice to select the code word  \underline{x}  with the smallest Hamming distance  d_{\rm H}(\underline{x}, \, \underline{y})  for the given received vector  \underline{y}:
\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.
  • But according to the subtask  (1)  also applies:
\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.
  • The factor  1/4  does not matter for the minimization.  Since  d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0,  it does not matter whether the minimization is done with respect to   d_{\rm E}(\underline{x}, \, \underline{y})   or   d_{\rm E}^2(\underline{x}, \, \underline{y}).


(3)  Correct is the  proposed solution 2:

  • The square of the Euclidean distance can be expressed as follows:
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.
  • The first two summands are each equal to  L  and need not be considered for minimization.
  • For the last expression in this equation,  –2 \cdot 〈 \underline{x}, \, \underline{y} 〉  can be written.
  • Due to the negative sign,  minimization becomes maximization   ⇒   answer 2.


(4)  Correct are the  proposed solutions 2 and 3:

  • For the AWGN channel,  unlike the BSC,  no Hamming distance can be specified.
  • Based on the equation
d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i
the same statements apply for the first and last summands as for the BSC model – see subtask  (3).
  • For the middle summand,  y_i = x_i + n_i  and  x_i ∈ \{–1, \, +1\}  hold:
\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.
  • The first summand gives again  L,  the second is proportional to the noise power,  and the last term vanishes since  \underline{x}  and  \underline{n}  are uncorrelated.
  • So for minimizing  d_{\rm E}(\underline{x}, \, \underline{y}),  the sum over  y_i^2  need not be considered since there is no relation to the code sequences  \underline{x}.