Difference between revisions of "Aufgaben:Exercise 3.12: Path Weighting Function"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken }} [[File:|right|]] ===Fragebogen=== <quiz displ…“)
 
 
(27 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken
+
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
 +
[[File:EN_KC_A_3_12.png|right|frame|$m = 1$&nbsp; convolutional encoder and state transition diagram]]
 +
In&nbsp; [[Aufgaben:Exercise_3.6:_State_Transition_Diagram|$\text{Exercise 3.6}$]]&nbsp; the state transition diagram for the drawn convolutional encoder with properties
 +
* Rate&nbsp; $R = 1/2$,
  
 +
* memory&nbsp; $m = 1$,
  
 +
* transfer function matrix&nbsp; $\mathbf{G}(D) = (1, \, D)$
  
  
 +
was constructed  which is shown on the right.
  
 +
Now,&nbsp;  from this state transition diagram
 +
* the path weighting enumerator function&nbsp; $T(X)$,&nbsp; and
  
}}
+
* the extended path weighting enumerator function&nbsp; $T_{\rm enh}(X, \, U)$
  
[[File:|right|]]
 
  
 +
can be determined, where&nbsp; $X$&nbsp; and&nbsp; $U$&nbsp; are dummy variables.&nbsp; The method is explained in detail in the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Path_weighting_enumerator_function_from_state_transition_diagram|"Theory part"]].
  
===Fragebogen===
+
Finally, from&nbsp; $T(X)$&nbsp; the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Free_distance_vs._minimum_distance|"free distance"]]&nbsp; $d_{\rm F}$&nbsp; has to be determined.
  
 +
 +
 +
 +
Hints:
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Boundss| "Distance Characteristics and Error Probability Bounds"]].
 +
 +
* Consider the series expansion in the solution
 +
:$$\frac{1}{1-x} = 1 + x + x^2 +  x^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}.$$
 +
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What should be considered when modifying the transition diagram?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ The state&nbsp; $S_0$&nbsp; must be split into&nbsp; $S_0$&nbsp; and&nbsp; $S_0\hspace{0.01cm}'$.
+ Richtig
+
- The state &nbsp; $S_1$&nbsp; must be split into &nbsp; $S_0$&nbsp; and&nbsp; $S_0\hspace{0.01cm}'$.
 +
+ The transition from&nbsp; $S_0$&nbsp; to&nbsp; $S_1$&nbsp; must be labeled&nbsp; $U\hspace{-0.05cm}X^2$.
 +
+ The transition from&nbsp; $S_1$&nbsp; to&nbsp; $S_1$&nbsp; is to be labeled&nbsp; $U\hspace{-0.05cm}X$.
 +
+ The transition from&nbsp; $S_1$&nbsp; to&nbsp; $S_0\hspace{0.01cm}'$ shall be labeled&nbsp; $X$.
  
 +
{What equations apply to the extended path weighting enumerator function&nbsp; $T_{\rm enh}(X, \, U)$?
 +
|type="[]"}
 +
- $T_{\rm enh}(X, \, U) = U^2X^3$
 +
+ $T_{\rm enh}(X, \, U) = UX^3/(1 \, &ndash;UX)$
 +
+ $T_{\rm enh}(X, \, U) = UX^3 + U^2X^4 + U^3X^5 + \hspace{0.05cm}\text{...}\hspace{0.1cm}$
  
{Input-Box Frage
+
{What equations apply to the&nbsp; "simple path weighting enumerator function"&nbsp; $T(X)$?
 +
|type="[]"}
 +
+ $T(X) = X^3/(1 \, &ndash;X)$,
 +
+ $T(X) = X^3 + X^4 + X^5 +\hspace{0.05cm}\text{...}\hspace{0.1cm}$
 +
 
 +
{What is the free distance of the considered code?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$d_{\rm F} \ = \ ${ 3 }
 +
</quiz>
 +
 
 +
===Solution===
 +
{{ML-Kopf}}
 +
[[File:EN_KC_A_3_12a.png|right|frame|State transition diagram <br>after modifications]]
 +
'''(1)'''&nbsp; From the adjacent graph,&nbsp; one can see that&nbsp; <u>proposed solutions 1, 3, 4, and 5</u>&nbsp; are correct:
 +
*The state&nbsp; $S_0$&nbsp; must be split into a start state&nbsp; $S_0$&nbsp; and a final state&nbsp; ${S_0}'$.
 +
 +
*The reason for this is that for the following calculation of the path weighting enumerator function&nbsp; $T(X, \, U)$&nbsp; all transitions from&nbsp; $S_0$&nbsp; to&nbsp; $S_0$&nbsp; must be excluded.
  
 +
*Each encoded symbol&nbsp; $x &#8712; \{0, \, 1\}$&nbsp; is represented by&nbsp; $X^x$,&nbsp; where&nbsp; $X$&nbsp; is a dummy variable with respect to the output sequence:&nbsp; $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.&nbsp; $ It further follows&nbsp;
 +
:$$(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2.$$
  
 +
*For a blue transition in the original diagram&nbsp; $($this represents&nbsp; $u_i = 1)$&nbsp; add the factor&nbsp; $U$&nbsp; in the modified diagram.
  
</quiz>
 
  
===Musterlösung===
 
{{ML-Kopf}}
 
'''1.'''
 
'''2.'''
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
{{ML-Fuß}}
 
  
 +
'''(2)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 und 3</u>:
 +
*The reduced diagram is a&nbsp; "ring"&nbsp; according to the listing in the [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Theory section"]].&nbsp; It follows:
 +
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}
 +
\hspace{0.05cm}.$$
 +
*With&nbsp; $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$,&nbsp; one obtains with the given series expansion:
 +
:$$T_{\rm enh}(X, U) =  \frac{U \hspace{0.05cm} X^3}{1- U  \hspace{0.05cm}  X}  = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U  \hspace{0.05cm}  X) + (U  \hspace{0.05cm}  X)^2 +\text{...} \hspace{0.10cm} \right ]
 +
\hspace{0.05cm}.$$
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.5 Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken
 
  
 +
'''(3)'''&nbsp; One gets from the extended path weighting enumerator function to&nbsp; $T(X)$&nbsp; by setting the formal parameter&nbsp; $U = 1$.
 +
* So&nbsp; <u>both proposed solutions</u>&nbsp; are correct.
  
  
 +
'''(4)'''&nbsp; The free distance&nbsp; $d_{\rm F}$&nbsp; can be read from the path weighting enumerator function&nbsp; $T(X)$&nbsp; as the lowest exponent of the dummy variable&nbsp; $X$ &nbsp; &rArr; &nbsp; $d_{\rm F} \ \underline{= 3}$.
 +
{{ML-Fuß}}
  
  
  
^]]
+
[[Category:Channel Coding: Exercises|^3.5 Distance Properties^]]

Latest revision as of 17:08, 22 November 2022

$m = 1$  convolutional encoder and state transition diagram

In  $\text{Exercise 3.6}$  the state transition diagram for the drawn convolutional encoder with properties

  • Rate  $R = 1/2$,
  • memory  $m = 1$,
  • transfer function matrix  $\mathbf{G}(D) = (1, \, D)$


was constructed which is shown on the right.

Now,  from this state transition diagram

  • the path weighting enumerator function  $T(X)$,  and
  • the extended path weighting enumerator function  $T_{\rm enh}(X, \, U)$


can be determined, where  $X$  and  $U$  are dummy variables.  The method is explained in detail in the  "Theory part".

Finally, from  $T(X)$  the  "free distance"  $d_{\rm F}$  has to be determined.



Hints:

  • Consider the series expansion in the solution
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}.$$



Questions

1

What should be considered when modifying the transition diagram?

The state  $S_0$  must be split into  $S_0$  and  $S_0\hspace{0.01cm}'$.
The state   $S_1$  must be split into   $S_0$  and  $S_0\hspace{0.01cm}'$.
The transition from  $S_0$  to  $S_1$  must be labeled  $U\hspace{-0.05cm}X^2$.
The transition from  $S_1$  to  $S_1$  is to be labeled  $U\hspace{-0.05cm}X$.
The transition from  $S_1$  to  $S_0\hspace{0.01cm}'$ shall be labeled  $X$.

2

What equations apply to the extended path weighting enumerator function  $T_{\rm enh}(X, \, U)$?

$T_{\rm enh}(X, \, U) = U^2X^3$
$T_{\rm enh}(X, \, U) = UX^3/(1 \, –UX)$
$T_{\rm enh}(X, \, U) = UX^3 + U^2X^4 + U^3X^5 + \hspace{0.05cm}\text{...}\hspace{0.1cm}$

3

What equations apply to the  "simple path weighting enumerator function"  $T(X)$?

$T(X) = X^3/(1 \, –X)$,
$T(X) = X^3 + X^4 + X^5 +\hspace{0.05cm}\text{...}\hspace{0.1cm}$

4

What is the free distance of the considered code?

$d_{\rm F} \ = \ $


Solution

State transition diagram
after modifications

(1)  From the adjacent graph,  one can see that  proposed solutions 1, 3, 4, and 5  are correct:

  • The state  $S_0$  must be split into a start state  $S_0$  and a final state  ${S_0}'$.
  • The reason for this is that for the following calculation of the path weighting enumerator function  $T(X, \, U)$  all transitions from  $S_0$  to  $S_0$  must be excluded.
  • Each encoded symbol  $x ∈ \{0, \, 1\}$  is represented by  $X^x$,  where  $X$  is a dummy variable with respect to the output sequence:  $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.  $ It further follows 
$$(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2.$$
  • For a blue transition in the original diagram  $($this represents  $u_i = 1)$  add the factor  $U$  in the modified diagram.


(2)  Correct are the  proposed solutions 2 und 3:

  • The reduced diagram is a  "ring"  according to the listing in the "Theory section".  It follows:
$$T_{\rm enh}(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$
  • With  $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$,  one obtains with the given series expansion:
$$T_{\rm enh}(X, U) = \frac{U \hspace{0.05cm} X^3}{1- U \hspace{0.05cm} X} = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U \hspace{0.05cm} X) + (U \hspace{0.05cm} X)^2 +\text{...} \hspace{0.10cm} \right ] \hspace{0.05cm}.$$


(3)  One gets from the extended path weighting enumerator function to  $T(X)$  by setting the formal parameter  $U = 1$.

  • So  both proposed solutions  are correct.


(4)  The free distance  $d_{\rm F}$  can be read from the path weighting enumerator function  $T(X)$  as the lowest exponent of the dummy variable  $X$   ⇒   $d_{\rm F} \ \underline{= 3}$.