Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.12Z: Ring and Feedback"

From LNTwww
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
+
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
[[File:P_ID2710__KC_Z_3_12.png|right|frame|Ring und Rückkopplung im Zustandsübergangsdiagramm]]
+
[[File:EN_KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
Um die Pfadgewichtsfunktio T(X) eines Faltungscodes aus dem Zustandsübergangsdiagramm bestimmen zu können, ist es erforderlich, das Diagramm so zu reduzieren, bis es durch eine einzige Verbindung vom Startzustand zum Endzustand dargestellt werden kann.
+
In order to determine the path weighting enumerator function   T(X)   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
  
Im Zuge dieser Diagrammreduktion können auftreten:
+
In the course of this diagram reduction can occur:
* serielle und parallele Übergänge,
+
* serial and parallel transitions,
* ein Ring entsprechend der obigen Grafik,
 
* eine Rückkopplung entsprechend der unteren Grafik.
 
  
 +
* a ring according to the sketch above,
  
Für diese beiden Graphen sind die Entsprechungen E(X,U) und F(X,U) in Abhängigkeit der angegebenen Funktionen A(X,U), B(X, U), C(X,U), D(X,U) zu ermitteln.
+
* a feedback according to the sketch below.
  
''Hinweise:''
 
* Mit dieser Aufgabe sollen einige der Angaben auf [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Seite 4b]] von Kapitel 3.5 bewiesen werden.
 
* Angewendet werden diese Regeln in [[Aufgaben:3.12_Pfadgewichtsfunktion|Aufgabe A3.12]] und [[Aufgaben:3.13_Nochmals_Tenh(X,_U)_und_T(X)|Aufgabe A3.13]].
 
  
 +
For these two graphs,  find the correspondences   E(X,U)   and   F(X,U)   depending on the given functions   A(X,U), B(X, U), C(X,U), D(X,U) .
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hints:</u>
 +
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds| "Distance Characteristics and Error Probability Bounds"]].
 +
 
 +
* This exercise is intended to prove some of the statements on the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]&nbsp; section.
 +
 
 +
* Applied these rules in&nbsp; [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|Exercise 3.12]]&nbsp; and&nbsp; [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|Exercise 3.13]].
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Which of the listed transitions are possible with the ring?
 +
|type="[]"}
 +
+ S_1 &#8594; S_2 &#8594; S_3,
 +
+ S_1 &#8594; S_2 &#8594; S_2 &#8594; S_2 &#8594; S_3,
 +
- S_1 &#8594; S_2 &#8594; S_1 &#8594; S_2 &#8594; S_3.
 +
 
 +
{What is the substitution&nbsp; E(X,U)&nbsp; of a ring?
 +
|type="()"}
 +
- E(X,U)=[A(X,U)+B(X,U)] / [1C(X,U)],
 +
+ E(X,U)=A(X,U)B(X,U) / [1C(X,U)],
 +
- E(X,U)=A(X,U)C(X,U) / [1B(X,U)].
 +
 
 +
{Which of the listed transitions are possible with feedback?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ S_1 &#8594; S_2 &#8594; S_3 &#8594; S_4,
- false
+
- S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_4,
 +
+ S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_4,
 +
+ S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_4.
  
{Input-Box Frage
+
{What is the substitution&nbsp; F(X,U)&nbsp; of a feedback?
|type="{}"}
+
|type="()"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
+ $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
 +
- $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:
'''(2)'''&nbsp;  
+
*In general terms,&nbsp; one first goes from&nbsp; S1&nbsp; to&nbsp; S2,&nbsp; remains&nbsp; j&ndash;times in the state&nbsp; S2 (j=0, 1,2,  ...),&nbsp; and finally continues from&nbsp; S2&nbsp; to&nbsp; S3.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
 
 +
'''(2)'''&nbsp; Correct is the&nbsp; <u>solution suggestion 2</u>:
 +
*In accordance with the explanations for subtask&nbsp; '''(1)''',&nbsp; one obtains for the substitution of the ring:
 +
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 +
\hspace{0.05cm}.$$
 +
 
 +
*The parenthesis expression gives&nbsp; $1/(1 \, &ndash;C)$.
 +
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:
 +
* One goes first from&nbsp; S1&nbsp; to&nbsp; S2  A(X,U),
 +
 
 +
* then from&nbsp; S2&nbsp; to&nbsp; S3  C(X,U),
 +
 
 +
* then&nbsp; j&ndash;times back to&nbsp; S2&nbsp; and again to&nbsp; S3 (j=0, 1, 2,  ... )  E(X,U),
 +
 
 +
* finally from&nbsp; S3&nbsp; to&nbsp; S4  B(X,U),
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Thus, the correct solution is the&nbsp; <u>suggested solution 1</u>:
 +
*According to the sample solution to subtask&nbsp; '''(3)'''&nbsp; applies:
 +
:F(X,U)=A(X,U)C(X,U)E(X,U)B(X,U)
 +
 
 +
*Here&nbsp; E(X,U)&nbsp; describes the path&nbsp; "j&ndash;times"&nbsp; back to&nbsp; S2&nbsp; and again to&nbsp; S3 (j=0, 1, 2,  ...):
 +
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 +
\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} F(X, U) =  \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.5 Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken^]]
+
[[Category:Channel Coding: Exercises|^3.5 Distance Properties^]]

Latest revision as of 18:27, 22 November 2022

Ring and feedback in the state transition diagram

In order to determine the path weighting enumerator function   T(X)   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.

In the course of this diagram reduction can occur:

  • serial and parallel transitions,
  • a ring according to the sketch above,
  • a feedback according to the sketch below.


For these two graphs,  find the correspondences   E(X,U)   and   F(X,U)   depending on the given functions   A(X,U), B(X, U), C(X,U), D(X,U) .





Hints:



Questions

1

Which of the listed transitions are possible with the ring?

S1S2S3,
S1S2S2S2S3,
S1S2S1S2S3.

2

What is the substitution  E(X,U)  of a ring?

E(X,U)=[A(X,U)+B(X,U)] / [1C(X,U)],
E(X,U)=A(X,U)B(X,U) / [1C(X,U)],
E(X,U)=A(X,U)C(X,U) / [1B(X,U)].

3

Which of the listed transitions are possible with feedback?

S1S2S3S4,
S1S2S3S2S4,
S1S2S3S2S3S4,
S1S2S3S2S3S2S3S4.

4

What is the substitution  F(X,U)  of a feedback?

F(X,U)=A(X,U)B(X,U)C(X,U) / [1C(X,U)D(X,U)]
F(X,U)=A(X,U)B(X,U) / [1C(X,U)+D(X,U)].


Solution

(1)  Correct are the  solutions 1 and 2:

  • In general terms,  one first goes from  S1  to  S2,  remains  j–times in the state  S2 (j=0, 1,2,  ...),  and finally continues from  S2  to  S3.


(2)  Correct is the  solution suggestion 2:

  • In accordance with the explanations for subtask  (1),  one obtains for the substitution of the ring:
E = AB+ACB+AC2B+AC3B+ ...=AB[1+C+C2+C3+ ...].
  • The parenthesis expression gives  1/(1 \, –C).
E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.


(3)  Correct are the solutions 1, 3 and 4:

  • One goes first from  S_1  to  S_2 \ \Rightarrow \ A(X, \, U),
  • then from  S_2  to  S_3 \ \Rightarrow \ C(X, \, U),
  • then  j–times back to  S_2  and again to  S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U),
  • finally from  S_3  to  S_4 \ \Rightarrow \ B(X, \, U),


(4)  Thus, the correct solution is the  suggested solution 1:

  • According to the sample solution to subtask  (3)  applies:
F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}
  • Here  E(X, \, U)  describes the path  "j–times"  back to  S_2  and again to  S_3 \ (j =0, \ 1, \ 2, \ \text{ ...}):
E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.