Difference between revisions of "Aufgaben:Exercise 3.12Z: Ring and Feedback"
From LNTwww
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}} |
− | [[File: | + | [[File:EN_KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]] |
− | + | In order to determine the path weighting enumerator function $T(X)$ of a convolutional code from the state transition diagram, it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state. | |
− | + | In the course of this diagram reduction can occur: | |
− | * | + | * serial and parallel transitions, |
− | |||
− | |||
+ | * a ring according to the sketch above, | ||
− | + | * a feedback according to the sketch below. | |
+ | For these two graphs, find the correspondences $E(X, \, U)$ and $F(X, \, U)$ depending on the given functions $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ . | ||
− | |||
− | |||
− | |||
− | |||
− | === | + | |
+ | |||
+ | <u>Hints:</u> | ||
+ | * This exercise belongs to the chapter [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds| "Distance Characteristics and Error Probability Bounds"]]. | ||
+ | |||
+ | * This exercise is intended to prove some of the statements on the [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]] section. | ||
+ | |||
+ | * Applied these rules in [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|$\text{Exercise 3.12}$]] and [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|$\text{Exercise 3.13}$]]. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the listed transitions are possible with the ring? |
|type="[]"} | |type="[]"} | ||
+ $S_1 → S_2 → S_3$, | + $S_1 → S_2 → S_3$, | ||
Line 31: | Line 39: | ||
- $S_1 → S_2 → S_1 → S_2 → S_3$. | - $S_1 → S_2 → S_1 → S_2 → S_3$. | ||
− | { | + | {What is the substitution $E(X, \, U)$ of a ring? |
− | |type=" | + | |type="()"} |
− | - $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, | + | - $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$, |
− | + $E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, | + | + $E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$, |
− | - $E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, | + | - $E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$. |
− | { | + | {Which of the listed transitions are possible with feedback? |
|type="[]"} | |type="[]"} | ||
+ $S_1 → S_2 → S_3 → S_4$, | + $S_1 → S_2 → S_3 → S_4$, | ||
Line 44: | Line 52: | ||
+ $S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$. | + $S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$. | ||
− | { | + | {What is the substitution $F(X, \, U)$ of a feedback? |
− | |type=" | + | |type="()"} |
− | + $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, | + | + $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$ |
− | - $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, | + | - $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Correct are the <u>solutions 1 and 2</u>: |
− | * | + | *In general terms, one first goes from $S_1$ to $S_2$, remains $j$–times in the state $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$, and finally continues from $S_2$ to $S_3$. |
+ | |||
− | '''(2)''' | + | '''(2)''' Correct is the <u>solution suggestion 2</u>: |
− | * | + | *In accordance with the explanations for subtask '''(1)''', one obtains for the substitution of the ring: |
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] | :$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The parenthesis expression gives $1/(1 \, –C)$. |
:$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} | :$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' Correct are the <u>solutions 1, 3 and 4</u>: |
− | * | + | * One goes first from $S_1$ to $S_2 \ \Rightarrow \ A(X, \, U)$, |
− | * | + | |
− | * | + | * then from $S_2$ to $S_3 \ \Rightarrow \ C(X, \, U)$, |
− | * | + | |
+ | * then $j$–times back to $S_2$ and again to $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$, | ||
+ | |||
+ | * finally from $S_3$ to $S_4 \ \Rightarrow \ B(X, \, U)$, | ||
+ | |||
− | '''(4)''' | + | '''(4)''' Thus, the correct solution is the <u>suggested solution 1</u>: |
− | * | + | *According to the sample solution to subtask '''(3)''' applies: |
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$ | :$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$ | ||
− | * | + | *Here $E(X, \, U)$ describes the path "$j$–times" back to $S_2$ and again to $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$: |
:$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} | :$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} | ||
\hspace{0.3cm} | \hspace{0.3cm} | ||
Line 88: | Line 101: | ||
− | [[Category: | + | [[Category:Channel Coding: Exercises|^3.5 Distance Properties^]] |
Latest revision as of 17:27, 22 November 2022
In order to determine the path weighting enumerator function $T(X)$ of a convolutional code from the state transition diagram, it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
In the course of this diagram reduction can occur:
- serial and parallel transitions,
- a ring according to the sketch above,
- a feedback according to the sketch below.
For these two graphs, find the correspondences $E(X, \, U)$ and $F(X, \, U)$ depending on the given functions $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .
Hints:
- This exercise belongs to the chapter "Distance Characteristics and Error Probability Bounds".
- This exercise is intended to prove some of the statements on the "Rules for manipulating the state transition diagram" section.
- Applied these rules in $\text{Exercise 3.12}$ and $\text{Exercise 3.13}$.
Questions
Solution
(1) Correct are the solutions 1 and 2:
- In general terms, one first goes from $S_1$ to $S_2$, remains $j$–times in the state $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$, and finally continues from $S_2$ to $S_3$.
(2) Correct is the solution suggestion 2:
- In accordance with the explanations for subtask (1), one obtains for the substitution of the ring:
- $$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
- The parenthesis expression gives $1/(1 \, –C)$.
- $$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$
(3) Correct are the solutions 1, 3 and 4:
- One goes first from $S_1$ to $S_2 \ \Rightarrow \ A(X, \, U)$,
- then from $S_2$ to $S_3 \ \Rightarrow \ C(X, \, U)$,
- then $j$–times back to $S_2$ and again to $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
- finally from $S_3$ to $S_4 \ \Rightarrow \ B(X, \, U)$,
(4) Thus, the correct solution is the suggested solution 1:
- According to the sample solution to subtask (3) applies:
- $$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
- Here $E(X, \, U)$ describes the path "$j$–times" back to $S_2$ and again to $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
- $$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$