Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.12Z: Ring and Feedback"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
  
 
[[File:EN_KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
 
[[File:EN_KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
In order to determine the path weighting enumerator function  T(X)  of a convolutional code from the state transition diagram, it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
+
In order to determine the path weighting enumerator function   T(X)   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
  
 
In the course of this diagram reduction can occur:
 
In the course of this diagram reduction can occur:
 
* serial and parallel transitions,
 
* serial and parallel transitions,
 +
 
* a ring according to the sketch above,
 
* a ring according to the sketch above,
 +
 
* a feedback according to the sketch below.
 
* a feedback according to the sketch below.
  
  
For these two graphs, find the correspondences  E(X,U)  and  F(X,U)  depending on the given functions  A(X,U), B(X, U), C(X,U), D(X,U) .
+
For these two graphs,  find the correspondences   E(X,U)   and   F(X,U)   depending on the given functions   A(X,U), B(X, U), C(X,U), D(X,U) .
  
  
Line 19: Line 21:
  
  
Hints:
+
<u>Hints:</u>
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds| "Distance Characteristics and Error Probability Bounds"]].
 
* This exercise belongs to the chapter&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds| "Distance Characteristics and Error Probability Bounds"]].
  
* This exercise is intended to prove some of the statements on the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]&nbsp; page.
+
* This exercise is intended to prove some of the statements on the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]&nbsp; section.
* Applied these rules in the&nbsp; [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|"Exercise 3.12"]]&nbsp; and the&nbsp; [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|"Exercise 3.13"]].
+
 
 +
* Applied these rules in&nbsp; [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|$\text{Exercise 3.12}$]]&nbsp; and&nbsp; [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|$\text{Exercise 3.13}$]].
  
  
Line 57: Line 60:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>solutions 1 and 2</u>:  
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>:  
*In general terms, one first goes from S1 to S2, remains j&ndash;times in the state S2 (j=0, 1,2,  ...), and finally continues from S2 to S3.
+
*In general terms,&nbsp; one first goes from&nbsp; S1&nbsp; to&nbsp; S2,&nbsp; remains&nbsp; j&ndash;times in the state&nbsp; S2 (j=0, 1,2,  ...),&nbsp; and finally continues from&nbsp; S2&nbsp; to&nbsp; S3.
  
  
  
'''(2)'''&nbsp; Correct is the <u>solution suggestion 2</u>:
+
'''(2)'''&nbsp; Correct is the&nbsp; <u>solution suggestion 2</u>:
*In accordance with the explanations for the subtask '''(1)''', one obtains for the substitution of the ring  
+
*In accordance with the explanations for subtask&nbsp; '''(1)''',&nbsp; one obtains for the substitution of the ring:
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*The parenthesis expression gives 1/(1 \, &ndash;C).  
+
*The parenthesis expression gives&nbsp; 1/(1 \, &ndash;C).  
 
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 73: Line 76:
  
 
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:  
 
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:  
* one goes first from S1 to S2  A(X,U),
+
* One goes first from&nbsp; S1&nbsp; to&nbsp; S2  A(X,U),
* then from S2 to S3  C(X,U),
+
 
* then j&ndash;times back to S2 and again to S3 (j=0, 1, 2,  ... )  E(X,U),
+
* then from&nbsp; S2&nbsp; to&nbsp; S3  C(X,U),
* finally from S3 to S4  B(X,U),
+
 
 +
* then&nbsp; j&ndash;times back to&nbsp; S2&nbsp; and again to&nbsp; S3 (j=0, 1, 2,  ... )  E(X,U),
 +
 
 +
* finally from&nbsp; S3&nbsp; to&nbsp; S4  B(X,U),
  
  
  
'''(4)'''&nbsp; Thus, the correct solution is <u>suggested solution 1</u>:
+
'''(4)'''&nbsp; Thus, the correct solution is the&nbsp; <u>suggested solution 1</u>:
*According to the sample solution to subtask '''(3)''' applies:
+
*According to the sample solution to subtask&nbsp; '''(3)'''&nbsp; applies:
 
:F(X,U)=A(X,U)C(X,U)E(X,U)B(X,U)
 
:F(X,U)=A(X,U)C(X,U)E(X,U)B(X,U)
  
*Here E(X,U) describes the path "j&ndash;times" back to S2 and again to S3 (j=0, 1, 2,  ...):
+
*Here&nbsp; E(X,U)&nbsp; describes the path&nbsp; "j&ndash;times"&nbsp; back to&nbsp; S2&nbsp; and again to&nbsp; S3 (j=0, 1, 2,  ...):
 
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 
\hspace{0.3cm}
 
\hspace{0.3cm}

Latest revision as of 18:27, 22 November 2022

Ring and feedback in the state transition diagram

In order to determine the path weighting enumerator function   T(X)   of a convolutional code from the state transition diagram,  it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.

In the course of this diagram reduction can occur:

  • serial and parallel transitions,
  • a ring according to the sketch above,
  • a feedback according to the sketch below.


For these two graphs,  find the correspondences   E(X,U)   and   F(X,U)   depending on the given functions   A(X,U), B(X, U), C(X,U), D(X,U) .





Hints:



Questions

1

Which of the listed transitions are possible with the ring?

S1S2S3,
S1S2S2S2S3,
S1S2S1S2S3.

2

What is the substitution  E(X,U)  of a ring?

E(X,U)=[A(X,U)+B(X,U)] / [1C(X,U)],
E(X,U)=A(X,U)B(X,U) / [1C(X,U)],
E(X,U)=A(X,U)C(X,U) / [1B(X,U)].

3

Which of the listed transitions are possible with feedback?

S1S2S3S4,
S1S2S3S2S4,
S1S2S3S2S3S4,
S1S2S3S2S3S2S3S4.

4

What is the substitution  F(X,U)  of a feedback?

F(X,U)=A(X,U)B(X,U)C(X,U) / [1C(X,U)D(X,U)]
F(X,U)=A(X,U)B(X,U) / [1C(X,U)+D(X,U)].


Solution

(1)  Correct are the  solutions 1 and 2:

  • In general terms,  one first goes from  S1  to  S2,  remains  j–times in the state  S2 (j=0, 1,2,  ...),  and finally continues from  S2  to  S3.


(2)  Correct is the  solution suggestion 2:

  • In accordance with the explanations for subtask  (1),  one obtains for the substitution of the ring:
E = AB+ACB+AC2B+AC3B+ ...=AB[1+C+C2+C3+ ...].
  • The parenthesis expression gives  1/(1 \, –C).
E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.


(3)  Correct are the solutions 1, 3 and 4:

  • One goes first from  S_1  to  S_2 \ \Rightarrow \ A(X, \, U),
  • then from  S_2  to  S_3 \ \Rightarrow \ C(X, \, U),
  • then  j–times back to  S_2  and again to  S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U),
  • finally from  S_3  to  S_4 \ \Rightarrow \ B(X, \, U),


(4)  Thus, the correct solution is the  suggested solution 1:

  • According to the sample solution to subtask  (3)  applies:
F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}
  • Here  E(X, \, U)  describes the path  "j–times"  back to  S_2  and again to  S_3 \ (j =0, \ 1, \ 2, \ \text{ ...}):
E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.