Difference between revisions of "Aufgaben:Exercise 4.4Z: Supplement to Exercise 4.4"
(24 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Soft-in_Soft-Out_Decoder}} |
− | [[File:P_ID2994__KC_Z_4_4_v3.png |right|frame| | + | [[File:P_ID2994__KC_Z_4_4_v3.png |right|frame|Hamming weights wH(x_), <br>sequence probabilities Pr(x_) ]] |
− | + | The information theorist [https://en.wikipedia.org/wiki/Robert_G._Gallager $\text{Robert G. Gallager}$] dealt already in 1963 with the following problem: | |
− | * | + | * Given a random vector x_=(x1,x2, ...,xn) with n binary elements x_i ∈ \{0, \, 1\}. |
− | |||
− | |||
− | |||
+ | * Known are all probabilities pi=Pr(xi=1) and qi=Pr(xi=0)=1−pi with index i=1, ..., n. | ||
− | + | * What we are looking for is the probability that the number of "ones" in this vector is even. | |
− | * | + | |
+ | * Or expressed using the [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]: What is the probability Pr[wH(x_) is even]? | ||
+ | |||
+ | |||
+ | The graph illustrates the task for the example n=4 and p1=0.2, p2=0.9, p3=0.3 and p4=0.6. | ||
+ | * For the row highlighted in green ⇒ x_=(1,0,0,1) holds wH(x_)=2 and | ||
:Pr(x_)=p1⋅q2⋅q3⋅p4=0.0084. | :Pr(x_)=p1⋅q2⋅q3⋅p4=0.0084. | ||
− | * | + | * Blue font means "wH(x_) is even". Red font stands for "wH(x_) is odd." |
− | * | + | |
− | * | + | *The probability ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ is \ even}]$ is the sum of the blue numbers in the last column. |
+ | |||
+ | *The sum of the red numbers gives ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ is \ odd}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ is \ even}]$. | ||
− | Gallager | + | Gallager solved the problem in an analytical way: |
− | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \right ] |
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$ | \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$ | ||
− | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} |
\right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$ | \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$ | ||
− | + | Here the following auxiliary variable is used: | |
:$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) | :$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | One applies the equation, for example, to calculate the extrinsic L–values of a "single parity–check code". | |
− | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm | + | |
+ | Indeed, as already pointed out in [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC| $\text{Exercise 4.4}$]] the extrinsic log likelihood ratio with Hamming–weight wH is the truncated sequence x_(−i): | ||
+ | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Here it is taken into account that for LE(i) one may refer only to the other symbols (j ≠ i) : | |
:x_(−i)=(x1, ...,xi−1,xi+1, ...,xn). | :x_(−i)=(x1, ...,xi−1,xi+1, ...,xn). | ||
Line 39: | Line 46: | ||
− | + | <u>Hints:</u> | |
− | * | + | *This exercise belongs to the chapter [[Channel_Coding/Soft%E2%80%93in_Soft%E2%80%93out_Decoder|"Soft–in Soft–out Decoder"]]. |
− | |||
− | |||
+ | *Reference is made in particular to the section [[Channel_Coding/Soft-in_Soft-Out_Decoder#Calculation_of_extrinsic_log_likelihood_ratios|"For calculating the extrinsic log likelihood ratios"]]. | ||
+ | *The exercise is intended as a supplement to [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC| Exercise 4.4]] . | ||
+ | |||
− | === | + | |
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {We consider the vector x_=(x1,x2) ⇒ n=2 with x_i ∈ \{0, \, 1\} and $p_1 = 0.2, \ p_2 = 0.9$. <br>What is the probability that x_ contains an even number of "ones" ? |
|type="{}"} | |type="{}"} | ||
− | $ | + | ${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm is \ even}\big ] \ = \ ${ 0.26 3% } |
− | { | + | {Compute the same probability for $\underline{x} = (x_1, \, x_2, \, x_3) \ \Rightarrow \ n = 3 and p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$. |
|type="{}"} | |type="{}"} | ||
− | $ | + | ${\rm Pr}\big [w_{\rm H}(\underline{x}) \ {\rm is \ even}\big ] \ = \ ${ 0.404 3% } |
− | { | + | {Now let be n=4 and p1=0.2, p2=0.9, p3=0.3, p4=0.6. Calculate the following quantities according to Gallager's equation: |
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr( | + | ${\rm Pr(blue) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm is \ even}\big ] \hspace{0.33cm} = \ ${ 0.5192 3% } |
− | ${\rm Pr( | + | ${\rm Pr(red) = Pr}\big [w_{\rm H}(\underline{x}) \ {\rm is \ odd}\big ] \hspace{0.1cm} = \ ${ 0.4808 3% } |
− | Q=Pr(blau)/Pr(rot) = { 1.0799 3% } | + | $\text{Quotient }Q = {\rm Pr(blau)/Pr(rot)} \hspace{0.4cm} = \ ${ 1.0799 3% } |
− | { | + | {What is the extrinsic log likelihood ratio for the symbol i=5 at $\text{SPC (5, 4, 2)}$ with p1=0.2, p2=0.9, p3=0.3, p4=0.6, p5=0.9? |
|type="{}"} | |type="{}"} | ||
LE(i=5) = { 0.077 3% } | LE(i=5) = { 0.077 3% } | ||
− | { | + | {How does LE(i=5) change if we assume p5=0.1 instead? |
− | |type=" | + | |type="()"} |
− | - LE(i=5) | + | - LE(i=5) becomes larger. |
− | - LE(i=5) | + | - LE(i=5) becomes smaller. |
− | + LE(i=5) | + | + LE(i=5) is not changed compared to subtask '''(4)'''. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | [[File:P_ID2996__KC_Z_4_4a_v1.png|frame|right|Derivation "wH is even" for code length n=2.]] | |
− | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.10cm}{\rm | + | '''(1)''' According to the adjacent table applies: |
+ | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.10cm}{\rm is \hspace{0.10cm} even}\right ] = | ||
{\rm Pr} \left [w_{\rm H} = 0 \right] + {\rm Pr} \left [w_{\rm H} = 2 \right] | {\rm Pr} \left [w_{\rm H} = 0 \right] + {\rm Pr} \left [w_{\rm H} = 2 \right] | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
− | + | *With the probabilities | |
:p1=Pr(x1=1) = 0.2,q1=Pr(x1=0)=0.8, | :p1=Pr(x1=1) = 0.2,q1=Pr(x1=0)=0.8, | ||
:p2=Pr(x2=1) = 0.9,q2=Pr(x2=0)=0.1 | :p2=Pr(x2=1) = 0.9,q2=Pr(x2=0)=0.1 | ||
− | + | :one obtains: | |
:$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 0\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | :$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 0\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | ||
{\rm Pr} \left [(x_1 = 0)\cap (x_2 = 0) \right] = q_1 \cdot q_2 = 0.8 \cdot 0.1 | {\rm Pr} \left [(x_1 = 0)\cap (x_2 = 0) \right] = q_1 \cdot q_2 = 0.8 \cdot 0.1 | ||
Line 90: | Line 101: | ||
:$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 2\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | :$${\rm Pr} \left [w_{\rm H}(\underline{x}) = 2\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | ||
{\rm Pr} \left [(x_1 = 1)\cap (x_2 = 1) \right] = p_1 \cdot p_2 = 0.2 \cdot 0.9 = 0.18$$ | {\rm Pr} \left [(x_1 = 1)\cap (x_2 = 1) \right] = p_1 \cdot p_2 = 0.2 \cdot 0.9 = 0.18$$ | ||
− | :$$\Rightarrow \hspace{0.3cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$$\Rightarrow \hspace{0.3cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right] = 0.8 + 0.18 \hspace{0.15cm} \underline{= 0.26} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *The Gallager's equation provides for the same set of parameters: | |
− | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{2} \hspace{0.25cm}(1-2\cdot p_i) = 0.5 + 0.5 \cdot (1 - 2 \cdot 0.2)\cdot (1 - 2 \cdot 0.9) = 0.26 |
− | |||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *The equation given by Gallager 1963 was hereby verified for n=2. | |
− | '''(2)''' [[File:P_ID2997__KC_Z_4_4b_v1.png|right|frame| | + | |
− | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | '''(2)''' In the second table, the four combinations with an even number of "ones" are marked in blue. |
− | + | [[File:P_ID2997__KC_Z_4_4b_v1.png|right|frame|Derivation "wH is even" for code length n=3.]] | |
+ | |||
+ | *The occurrence probabilities of each combination are given in the last column. Thus, the result is: | ||
+ | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right] = 0.056 + 0.216 + 0.006 + 0.126 \hspace{0.15cm} \underline{= 0.404} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *The red rows provide the complementary event: | |
− | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}\right] = 0.024 + 0.504 + 0.014 + 0.054= 0.596 |
− | |||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *Gallager's equation again gives the exact same result, although it should be noted that this equation is valid for all n and all arbitrary probabilities: | |
− | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \prod\limits_{i =1}^{3} \hspace{0.25cm}(1-2\cdot p_i) $$ |
− | :$$\ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot (+0.6) \cdot (-0.8) \cdot (+0.4) = 0.404 | + | :$$\Rightarrow\hspace{0.3cm}{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot (+0.6) \cdot (-0.8) \cdot (+0.4) = 0.404 |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | |||
− | + | '''(3)''' According to the specification page applies: | |
− | '''(3)''' | + | :π=4∏i=1(1−2⋅pi) = (1−2⋅0.2)⋅(1−2⋅0.9)⋅(1−2⋅0.3)⋅(1−2⋅0.6) |
− | :$$\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1 - 2 \cdot 0.2) \cdot (1 - 2 \cdot 0.9) \cdot (1 - 2 \cdot 0.3) \cdot (1 - 2 \cdot 0.6) | + | :$$\Rightarrow\hspace{0.3cm}\pi = \prod\limits_{i =1}^{4} \hspace{0.25cm}(1-2\cdot p_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}(+0.6) \cdot (-0.8) \cdot (+0.4) \cdot (-0.2) = 0.0384 |
− | :$$\ = \ \hspace{-0.15cm} (+0.6) \cdot (-0.8) \cdot (+0.4) \cdot (-0.2) = 0.0384 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *From this can be calculated: | |
− | :$${\rm Pr}({\rm | + | :$${\rm Pr}({\rm blue}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 + 0.5 \cdot \pi = 0.5 + 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.5192}\hspace{0.05cm},$$ |
− | :$${\rm Pr}({\rm | + | :$${\rm Pr}({\rm red}) = {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}\right] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 0.5 - 0.5 \cdot \pi = 0.5 - 0.5 \cdot 0.0384\hspace{0.15cm} \underline{= 0.4808}\hspace{0.05cm}. $$ |
− | + | *If you add up the blue and red probabilities on the information page,V you get exactly the values calculated here. For the quotient we get: | |
− | :$$Q = \frac{{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$$Q = \frac{{\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even}\right]} { {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd}\right]} = \frac{0.5192}{0.4808}\hspace{0.15cm} \underline{= 1.0799} |
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
− | '''(4)''' | + | |
− | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm | + | '''(4)''' For the "single parity–check code", the extrinsic log likelihood ratio with respect to the $i^{th}$ bit was specified as follows: |
+ | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | + | *Or: | |
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{1+\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}{1-\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)} | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{1+\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)}{1-\prod_{j \ne i} \hspace{0.25cm}(1-2\cdot p_j)} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | *At $\text{SPC (5, 4, 2}$) ⇒ n=5, this product for i=5 results from the following four factors: | |
:$$\pi = \prod\limits_{j = 1, \hspace{0.05cm}2, \hspace{0.05cm}3, \hspace{0.05cm}4} \hspace{0.05cm}(1-2\cdot p_j) = | :$$\pi = \prod\limits_{j = 1, \hspace{0.05cm}2, \hspace{0.05cm}3, \hspace{0.05cm}4} \hspace{0.05cm}(1-2\cdot p_j) = | ||
(1-2\cdot p_1) \cdot (1-2\cdot p_2) \cdot (1-2\cdot p_3) \cdot (1-2\cdot p_4) | (1-2\cdot p_1) \cdot (1-2\cdot p_2) \cdot (1-2\cdot p_3) \cdot (1-2\cdot p_4) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | The comparison with subtask '''(3)''' shows that LE(i=5)=lnQ=ln(1.0799) ≈0.077_. | |
− | '''(5)''' | + | '''(5)''' Correct is the <u>proposed solution 3</u> because the result for LE(i=5) is independent of p5. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Channel Coding: Exercises|^4.1 Soft–in Soft–out Decoder^]] |
Latest revision as of 16:29, 3 December 2022
The information theorist Robert G. Gallager dealt already in 1963 with the following problem:
- Given a random vector x_=(x1,x2, ...,xn) with n binary elements xi∈{0,1}.
- Known are all probabilities pi=Pr(xi=1) and qi=Pr(xi=0)=1−pi with index i=1, ..., n.
- What we are looking for is the probability that the number of "ones" in this vector is even.
- Or expressed using the "Hamming weight": What is the probability Pr[wH(x_) is even]?
The graph illustrates the task for the example n=4 and p1=0.2, p2=0.9, p3=0.3 and p4=0.6.
- For the row highlighted in green ⇒ x_=(1,0,0,1) holds wH(x_)=2 and
- Pr(x_)=p1⋅q2⋅q3⋅p4=0.0084.
- Blue font means "wH(x_) is even". Red font stands for "wH(x_) is odd."
- The probability Pr[wH(x_) is even] is the sum of the blue numbers in the last column.
- The sum of the red numbers gives Pr[wH(x_) is odd]=1−Pr[wH(x_) is even].
Gallager solved the problem in an analytical way:
- Pr[wH(x_)iseven] = 1/2⋅[1+π],
- Pr[wH(x_)isodd] = 1/2⋅[1−π].
Here the following auxiliary variable is used:
- π=n∏i=1(1−2pi).
One applies the equation, for example, to calculate the extrinsic L–values of a "single parity–check code".
Indeed, as already pointed out in Exercise 4.4 the extrinsic log likelihood ratio with Hamming–weight wH is the truncated sequence x_(−i):
- LE(i)=lnPr[wH(x_(−i))iseven|y_]Pr[wH(x_(−i))isodd|y_].
Here it is taken into account that for LE(i) one may refer only to the other symbols (j≠i) :
- x_(−i)=(x1, ...,xi−1,xi+1, ...,xn).
Hints:
- This exercise belongs to the chapter "Soft–in Soft–out Decoder".
- Reference is made in particular to the section "For calculating the extrinsic log likelihood ratios".
- The exercise is intended as a supplement to Exercise 4.4 .
Questions
Solution
(1) According to the adjacent table applies:
- Pr[wH(x_)iseven]=Pr[wH=0]+Pr[wH=2].
- With the probabilities
- p1=Pr(x1=1) = 0.2,q1=Pr(x1=0)=0.8,
- p2=Pr(x2=1) = 0.9,q2=Pr(x2=0)=0.1
- one obtains:
- Pr[wH(x_)=0] = Pr[(x1=0)∩(x2=0)]=q1⋅q2=0.8⋅0.1=0.08,
- Pr[wH(x_)=2] = Pr[(x1=1)∩(x2=1)]=p1⋅p2=0.2⋅0.9=0.18
- ⇒Pr[wH(x_)iseven]=0.8+0.18=0.26_.
- The Gallager's equation provides for the same set of parameters:
- Pr[wH(x_)iseven] = 0.5+0.5⋅2∏i=1(1−2⋅pi)=0.5+0.5⋅(1−2⋅0.2)⋅(1−2⋅0.9)=0.26.
- The equation given by Gallager 1963 was hereby verified for n=2.
(2) In the second table, the four combinations with an even number of "ones" are marked in blue.
- The occurrence probabilities of each combination are given in the last column. Thus, the result is:
- Pr[wH(x_)iseven]=0.056+0.216+0.006+0.126=0.404_.
- The red rows provide the complementary event:
- Pr[wH(x_)isodd]=0.024+0.504+0.014+0.054=0.596.
- Gallager's equation again gives the exact same result, although it should be noted that this equation is valid for all n and all arbitrary probabilities:
- Pr[wH(x_)iseven] = 0.5+0.5⋅3∏i=1(1−2⋅pi)
- ⇒Pr[wH(x_)iseven] = 0.5+0.5⋅(+0.6)⋅(−0.8)⋅(+0.4)=0.404.
(3) According to the specification page applies:
- π=4∏i=1(1−2⋅pi) = (1−2⋅0.2)⋅(1−2⋅0.9)⋅(1−2⋅0.3)⋅(1−2⋅0.6)
- ⇒π=4∏i=1(1−2⋅pi) = (+0.6)⋅(−0.8)⋅(+0.4)⋅(−0.2)=0.0384.
- From this can be calculated:
- Pr(blue)=Pr[wH(x_)iseven] = 0.5+0.5⋅π=0.5+0.5⋅0.0384=0.5192_,
- Pr(red)=Pr[wH(x_)isodd] = 0.5−0.5⋅π=0.5−0.5⋅0.0384=0.4808_.
- If you add up the blue and red probabilities on the information page,V you get exactly the values calculated here. For the quotient we get:
- Q=Pr[wH(x_)iseven]Pr[wH(x_)isodd]=0.51920.4808=1.0799_.
(4) For the "single parity–check code", the extrinsic log likelihood ratio with respect to the ith bit was specified as follows:
- LE(i)=lnPr[wH(x_(−i))iseven|y_]Pr[wH(x_(−i))isodd|y_],
- Or:
- LE(i)=ln1+∏j≠i(1−2⋅pj)1−∏j≠i(1−2⋅pj).
- At SPC (5, 4, 2) ⇒ n=5, this product for i=5 results from the following four factors:
- π=∏j=1,2,3,4(1−2⋅pj)=(1−2⋅p1)⋅(1−2⋅p2)⋅(1−2⋅p3)⋅(1−2⋅p4).
The comparison with subtask (3) shows that LE(i=5)=lnQ=ln(1.0799) ≈0.077_.
(5) Correct is the proposed solution 3 because the result for LE(i=5) is independent of p5.