Difference between revisions of "Aufgaben:Exercise 4.7Z: Principle of Syndrome Decoding"

From LNTwww
Line 2: Line 2:
  
 
[[File:EN_KC_Z_4_7_neu.png|right|frame|Coset leader for the code under consideration  $\rm HC \ (7, \ 4, \ 3)$]]
 
[[File:EN_KC_Z_4_7_neu.png|right|frame|Coset leader for the code under consideration  $\rm HC \ (7, \ 4, \ 3)$]]
The syndrome decoding was already treated in detail in the chapter  [[Channel_Coding/Decoding_of_Linear_Block_Codes| "Decoding of Linear Block Codes"]] . With all Hamming codes, which are as well known perfect, this gives a decoding result as good as with the (generally) clearly more complicated maximum likelihood decoding.
+
The syndrome decoding was already treated in detail in the chapter  [[Channel_Coding/Decoding_of_Linear_Block_Codes| "Decoding of Linear Block Codes"]].   
 +
 
 +
With all Hamming codes,  which are as well known perfect,  this gives a decoding result as good as with the  $($generally$)$ clearly more complicated maximum likelihood decoding.
  
 
For syndrome decoding one proceeds as follows:
 
For syndrome decoding one proceeds as follows:
* One forms the syndrome from the received vector  $\underline{y}$  of length  $n$  and the parity-check matrix  $\mathbf{H}$ :
+
* One forms the syndrome from the received vector  $\underline{y}$  of length  $n$  and the parity-check matrix  $\mathbf{H}$:
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m)
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m)
 
   \hspace{0.05cm},  \hspace{0.5cm}{\rm Note\hspace{-0.10cm}:} \hspace{0.15cm}m = n-k \hspace{0.05cm}. $$
 
   \hspace{0.05cm},  \hspace{0.5cm}{\rm Note\hspace{-0.10cm}:} \hspace{0.15cm}m = n-k \hspace{0.05cm}. $$
  
* The received word  $\underline{y} = \underline{x} \ {\rm (code\:word)} + \underline{e} \ {\rm (error\:vector)}$  is not necessarily an element of  ${\rm GF}(2^m)$, but certainly an element of  ${\rm GF}(2^n)$  and it holds because of  $\underline{x} \cdot \mathbf{H}^{\rm T} = \underline{0}$  equally:
+
* The received word  $\underline{y} = \underline{x} \ {\rm (code\:word)} + \underline{e} \ {\rm (error\:vector)}$  is not necessarily an element of  ${\rm GF}(2^m)$,  but certainly an element of  ${\rm GF}(2^n)$  and it holds because of   $\underline{x} \cdot \mathbf{H}^{\rm T} = \underline{0}$   equally:
 
:$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T}\hspace{0.05cm}. $$
 
:$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T}\hspace{0.05cm}. $$
  
* Many error patterns  $\underline{e}$  lead to the same syndrome  $\underline{s}$. One now groups those error patterns with the same syndrome  $\underline{s}_{\mu}$  to the coset  ${\it \Psi}_{\mu}$ .
+
* Many error patterns  $\underline{e}$  lead to the same syndrome  $\underline{s}$. One now groups those error patterns with the same syndrome  $\underline{s}_{\mu}$  to the  "coset  ${\it \Psi}_{\mu}$".
  
* The coset leader  $\underline{e}_{\mu}$  is the error vector that has the lowest Hamming weight within the class  ${\it \Psi}_{\mu}$  and is accordingly the most probable.
+
* The  "coset leader"  $\underline{e}_{\mu}$  is the error vector that has the lowest Hamming weight within the class  ${\it \Psi}_{\mu}$  and is accordingly the most probable.
  
  
The table above shows the list of minor class leaders  $\underline{e}_{\mu}$  for each  $\underline{s}_{\mu}$  in the Hamming code  $\rm HC \ (7, \ 4, \ 3)$. This table is needed for the subtask '''(1)'''.
+
The table above shows the list of the class leaders  $\underline{e}_{\mu}$  for each  $\underline{s}_{\mu}$  in the Hamming code  $\rm HC \ (7, 4, 3)$. This table is needed for the subtask  '''(1)'''.
  
A similar table is to be created for the truncated Hamming code  $\rm HC \ (6, \ 3, \ 3)$ . This has already been used in the  [[Aufgaben:Exercise_4.6:_Product_Code_Generation| "Exercise 4.6"]]  and the  [[Aufgaben:Exercise_4.6Z:_Basics_of_Product_Codes| "Exercise 4.6Z"]]  and is given by its generator matrix:
+
A similar table is to be created for the truncated Hamming code  $\rm HC \ (6, 3, 3)$.  This has already been used in the  [[Aufgaben:Exercise_4.6:_Product_Code_Generation|$\text{Exercise 4.6}$]]  and the  [[Aufgaben:Exercise_4.6Z:_Basics_of_Product_Codes| $\text{Exercise 4.6Z}$]]  and is given by its generator matrix:
 
:$${ \boldsymbol{\rm G}}  
 
:$${ \boldsymbol{\rm G}}  
 
=  \begin{pmatrix}
 
=  \begin{pmatrix}
Line 27: Line 29:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
Unlike the original  $\rm (7, \ 4, \ 3)$ Hamming code, the shortened  $\rm (6, \ 3, \ 3)$– Hamming code is not perfect, so a single-w
+
Unlike the original  $\rm (7, 4, 3)$  Hamming code,  the shortened  $\rm (6, 3, 3)$  Hamming code is not perfect, so a single-error coset leader  $\underline{s}_{\mu}$  cannot be found for all possible  $\underline{e}_{\mu}$.
error coset leader  $\underline{s}_{\mu}$  cannot be found for all possible  $\underline{e}_{\mu}$ .
 
 
 
  
  
Line 36: Line 36:
  
  
 +
<u>Hints:</u>
 +
* The exercise refers to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes| "Basic Product Codes"]]&nbsp; and is intended as a supplement to&nbsp; [[Aufgaben:Exercise_4.7:_Product_Code_Decoding|$\text{Exercise 4.7}$]].
 +
 +
* Similar task settings were covered in&nbsp; [[Aufgaben:Exercise_1.11:_Syndrome_Decoding| $\text{Exercise 1.11}$]]&nbsp; and&nbsp; [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|$\text{Exercise 1.11Z}$]]&nbsp; from chapter&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding Linear Block Codes"]].
  
 +
* The relationship between generator matrix&nbsp; $\mathbf{G}$&nbsp; and parity-check matrix&nbsp; $\mathbf{H}$&nbsp; of systematic codes is given in chapter&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes|"General Description of Linear Block Codes"]].
  
 +
<u>Hints:</u>
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes| "Basics of Product Codes"]].
  
Hints:
+
*Reference is made in particular to the section&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes#Iterative_syndrome_decoding_of_product_codes| "Iterative syndrome decoding of product codes"]].
* The exercise refers to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes| "Basic Product Codes"]]&nbsp; and is intended as a supplement to&nbsp; [[Aufgaben:Exercise_4.7:_Product_Code_Decoding| "Exercise 4.7"]]&nbsp;.
 
* Similar exercises were covered in the&nbsp; [[Aufgaben:Exercise_1.11:_Syndrome_Decoding| "Exercise 1.11"]]&nbsp; and the&nbsp; [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again| "Exercise 1.11Z"]]&nbsp; chapter&nbsp; [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding Linear Block Codes"]]&nbsp;.
 
* The relationship between generator matrix&nbsp; $\mathbf{G}$&nbsp; and parity-check matrix&nbsp; $\mathbf{H}$&nbsp; of systematic codes is given in chapter&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes|"General Description of Linear Block Codes"]]&nbsp;.
 
  
  

Revision as of 16:53, 8 December 2022

Coset leader for the code under consideration  $\rm HC \ (7, \ 4, \ 3)$

The syndrome decoding was already treated in detail in the chapter  "Decoding of Linear Block Codes"

With all Hamming codes,  which are as well known perfect,  this gives a decoding result as good as with the  $($generally$)$ clearly more complicated maximum likelihood decoding.

For syndrome decoding one proceeds as follows:

  • One forms the syndrome from the received vector  $\underline{y}$  of length  $n$  and the parity-check matrix  $\mathbf{H}$:
$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}, \hspace{0.5cm}{\rm Note\hspace{-0.10cm}:} \hspace{0.15cm}m = n-k \hspace{0.05cm}. $$
  • The received word  $\underline{y} = \underline{x} \ {\rm (code\:word)} + \underline{e} \ {\rm (error\:vector)}$  is not necessarily an element of  ${\rm GF}(2^m)$,  but certainly an element of  ${\rm GF}(2^n)$  and it holds because of   $\underline{x} \cdot \mathbf{H}^{\rm T} = \underline{0}$   equally:
$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T}\hspace{0.05cm}. $$
  • Many error patterns  $\underline{e}$  lead to the same syndrome  $\underline{s}$. One now groups those error patterns with the same syndrome  $\underline{s}_{\mu}$  to the  "coset  ${\it \Psi}_{\mu}$".
  • The  "coset leader"  $\underline{e}_{\mu}$  is the error vector that has the lowest Hamming weight within the class  ${\it \Psi}_{\mu}$  and is accordingly the most probable.


The table above shows the list of the class leaders  $\underline{e}_{\mu}$  for each  $\underline{s}_{\mu}$  in the Hamming code  $\rm HC \ (7, 4, 3)$. This table is needed for the subtask  (1).

A similar table is to be created for the truncated Hamming code  $\rm HC \ (6, 3, 3)$.  This has already been used in the  $\text{Exercise 4.6}$  and the  $\text{Exercise 4.6Z}$  and is given by its generator matrix:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$

Unlike the original  $\rm (7, 4, 3)$  Hamming code,  the shortened  $\rm (6, 3, 3)$  Hamming code is not perfect, so a single-error coset leader  $\underline{s}_{\mu}$  cannot be found for all possible  $\underline{e}_{\mu}$.




Hints:

Hints:


Questions

1

The received word be  $\underline{y} = (0, \, 1, \, 1,\, 0, \, 1, \, 0)$, the syndrome  $\underline{s} = (0, \, 1, \, 1)$. For which code word  $\underline{x}$  of  $\mathcal{C}_1$  does the syndrome decoder decide?

The most likely codeword is  $\ \underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0)$.
The most likely codeword is  $\ \underline{x} = (0, \, 1, \, 0, \, 0, \, 1, \, 1, \, 0)$.
The most likely codeword is  $\ \underline{x} = (0, \, 1, \, 0, \, 0, \, 1, \, 1, \, 1)$.

2

What statements hold for the parity-check matrix  $\mathbf{H}$  of the truncated code  $\mathcal{C}_2$?

This is a  $4 × 6$–matrix.
The first row of this matrix is:  $\ 110100$.
The second row of this matrix is:  $\ 101010$.
The third row of this matrix is:  $\ 011001$.

3

What syndrome  $\underline{s}$  results for the error pattern  $\underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 0)$?

$\underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{s} = \underline{s}_0 = (0, \, 0, \, 0)$,
$\underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{s} = \underline{s}_1 = (0, \, 0, \, 1)$,
$\underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{s} = \underline{s}_7 = (1, \, 1, \, 1)$.

4

Which of the following statements are true regarding single-error patterns?

single-error pattern   $\underline{e} = (1, \, 0, \, 0, \, 0, \, 0, \, 0)$   ⇒   syndrome $\underline{s}_6 = (1, \, 1, \, 0)$,
single-error pattern   $\underline{e} = (0, \, 1, \, 0, \, 0, \, 0, \, 0)$   ⇒   syndrome $\underline{s}_5 = (1, \, 0, \, 1)$,
single-error pattern   $\underline{e} = (0, \, 0, \, 1, \, 0, \, 0, \, 0)$   ⇒   syndrome $\underline{s}_3 = (0, \, 1, \, 1)$,
single-error pattern   $\underline{e} = (0, \, 0, \, 0, \, 1, \, 0, \, 0)$   ⇒   syndrome $\underline{s}_4 = (1, \, 0, \, 0)$,
single-error pattern   $\underline{e} = (0, \, 0, \, 0, \, 0, \, 1, \, 0)$   ⇒   syndrome $\underline{s}_2 = (0, \, 1, \, 0)$,
single-error pattern   $\underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 1)$   ⇒   syndrome $\underline{s}_1 = (0, \, 0, \, 1)$,

5

Which of the following error patterns lead to the syndrome  $\underline{s}_7 = (1, \, 1, \, 1)$?

$\underline{e} = (1, \, 1, \, 0, \, 0, \, 0, \, 0)$,
$\underline{e} = (1, \, 0, \, 0, \, 0, \, 0, \, 1)$,
$\underline{e} = (0, \, 1, \, 0, \, 0, \, 1, \, 0)$,
$\underline{e} = (1, \, 1, \, 1, \, 1, \, 1, \, 1)$.


Solution

(1)  Correct is proposed solution 2:

  • From the "Syndrome table" on the information page – valid for the $\rm (7, \ 4, \ 3)$–Hamming code – it can be read that the syndrome $\underline{s} = \underline{s}_3 = (0, \, 1, \, 1)$ corresponds to the error pattern $\underline{e} = (0, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0)$. Thus the code word
$$\underline{x} = \underline{y} \hspace{0.15cm}+ \hspace{0.15cm} \underline{y} = (0, 1, 1, 0, 1, 1, 0) \hspace{0.15cm}+ \hspace{0.15cm}(0, 0, 1, 0, 0, 0, 0) \hspace{0.15cm}= \hspace{0.15cm}(0, 1, 0, 0, 1, 1, 0)$$

most likely and the syndrome decoder will output this as the result.


(2)  Correct are solutions 2, 3, and 4:

  • The parity-check matrix $\mathbf{H}$ of the truncated $\rm (6, \ 3)$–Hamming code $C_2$ has $m = n - k = 3$ rows and $n$ columns. Consequently, it is a $3 × 6$–matrix   ⇒   statement 1 is false.


  • Since $\mathcal{C}_2$ is also a systematic code, the generator matrix $\mathbf{G}$ can be represented in the following form:
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} = \left ( { \boldsymbol{\rm I}}_3 ; \hspace{0.15cm} { \boldsymbol{\rm P}} \right ) \hspace{0.5cm}{\rm mit }\hspace{0.5cm} { \boldsymbol{\rm P}} = \begin{pmatrix} 1 &1 &0 \\ 1 &0 &1 \\ 0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • So it can be written for the parity-check matrix:
$${ \boldsymbol{\rm H}} = \left ( { \boldsymbol{\rm P}}^{\rm T} ; \hspace{0.15cm} { \boldsymbol{\rm I}}_3 \right ) = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • Here $\mathbf{I}_3$ denotes a $3 × 3$ diagonal matrix typical of the systematic code.
  • Proposed solutions 2, 3, and 4 are therefore correct:
  • Row 1:   $\ 110100$,
  • Row 2:   $\ 101010$,
  • row 3:   $\ 011001$.


(3)  Correct is proposed solution 1:

  • According to the statements in the chapter "Decoding of Linear Block Codes", $\underline{s} = \underline{e} \cdot \mathbf{H}^{\rm T}$ can be written.
  • Thus, for the error-free case   ⇒   $\underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 0)$:
$$\underline{s}= \left ( 0, \hspace{0.03cm} 0, \hspace{0.03cm}0, \hspace{0.03cm}0, \hspace{0.03cm}0, \hspace{0.03cm}0 \right ) \cdot \begin{pmatrix} 1 &1 &0 \\ 1 &0 &1 \\ 0 &1 &1 \\ 1 &0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{pmatrix}= \left ( 0, \hspace{0.03cm} 0, \hspace{0.03cm}0 \right ) = \underline{s}_0.$$


(4)  All statements are true, as can be seen from the sample solution to the last subtask:

  • The rows of the transposed parity-check matrix, read from top to bottom, give the respective syndromes for the error patterns $\underline{e} = (1, \, 0, \, 0, \, 0, \, 0, \, 0), \hspace{0.05cm} \text{ ... } \hspace{0.05cm} , \ \underline{e} = (0, \, 0, \, 0, \, 0, \, 0, \, 1)$.


(5)  Correct are solutions 2, 3, and 4:

  • The first statement is false because the first two rows of the transposed parity-check matrix $\mathbf{H}^{\rm T}$ summed $(1, \, 1, \, 0) + (1, \, 0, \, 1) = (0, \, 1, \, 1) = \underline{s_3} ≠ \underline{s}_7$ results in.
  • Statements 2, 3 and 4, on the other hand, are correct:
  • First and last row: $\ (1, \, 1, \, 0) + (0, \, 0, \, 1) = (1, \, 1, \, 1) = \underline{s}_7$,
  • second and fifth row: $\ (1, \, 0, \, 1) + (0, \, 1, \, 0) = (1, \, 1, \, 1) = \underline{s}_7$,
  • The sum over all rows also gives $\underline{s}_7$, since there are exactly three ones in each matrix column.