Difference between revisions of "Aufgaben:Exercise 3.3Z: Moments for Triangular PDF"
From LNTwww
m (Text replacement - "”" to """) |
|||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Expected_Values_and_Moments |
}} | }} | ||
− | [[File:P_ID142__Sto_Z_3_3.png|right|frame| | + | [[File:P_ID142__Sto_Z_3_3.png|right|frame|Two triangular PDFs]] |
− | + | We consider in this exercise two random signals $x(t)$ and $y(t)$ each with triangular PDF, namely | |
− | * | + | * the one-sided triangular PDF according to the upper graph: |
− | :$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm | + | :$$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$ |
− | * | + | * the two-sided triangular PDF according to the graph below: |
− | :$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm | + | :$$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y} \le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$ |
− | + | To solve this problem, consider the equation for the central moments: | |
:$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$ | :$$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$ | ||
− | + | Specifically, this equation yields the following results: | |
:$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$ | :$$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$ | ||
:$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$ | :$$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$ | ||
− | + | From the central moments of higher order one can derive among others: | |
− | * | + | *the "Charlier's skewness" $S = {\mu_3}/{\sigma^3}\hspace{0.05cm},$ |
− | * | + | *the "kurtosis" $K = {\mu_4}/{\sigma^4}\hspace{0.05cm}.$ |
− | + | Hints: | |
− | + | *This exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]]. | |
− | + | *Reference is made to the section [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Some_common_central_moments|Some common central moments]]. | |
− | |||
− | * | ||
− | * | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Calculate from the present PDF $f_x(x)$ the $k$-th order moment. What value results for the linear mean $m_x = m_1$? |
|type="{}"} | |type="{}"} | ||
− | $m_x \ = \ $ | + | $m_x \ = \ $ { 1.333 3% } |
− | { | + | {What is the second moment and the rms $\sigma_x$ of the random variable $x$? |
|type="{}"} | |type="{}"} | ||
$\sigma_x\ = \ $ { 0.943 3% } | $\sigma_x\ = \ $ { 0.943 3% } | ||
− | { | + | {For random variable $x$: What is the Charlier's skewness $S_x = \mu_3/\sigma_x^3$? Why is $S_x \ne 0$? |
|type="{}"} | |type="{}"} | ||
$S_x \ = \ $ { 0.566 3% } | $S_x \ = \ $ { 0.566 3% } | ||
− | { | + | {Which statements are true for the symmetrically distributed random variable $y$? |
|type="[]"} | |type="[]"} | ||
− | + | + | + All moments with odd $k$ are $m_k =0$. |
− | - | + | - All moments with even $k$ are $m_k =0$. |
− | + | + | + All moments $m_k$ with even $k$ are calculated as in subtask '''(1)'''. |
− | + | + | + The central moments $\mu_k$ are equal to the non-centered moments $m_k$. |
− | { | + | {Calculate the standard deviation of the random variable $y$. |
|type="{}"} | |type="{}"} | ||
$\sigma_y \ = \ $ { 1.633 3% } | $\sigma_y \ = \ $ { 1.633 3% } | ||
− | { | + | {What is the kurtosis $K_y$ of the random variable $y$? Interpret the result. |
|type="{}"} | |type="{}"} | ||
$K_y \ = \ $ { 2.4 3% } | $K_y \ = \ $ { 2.4 3% } | ||
Line 77: | Line 74: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' For the $k$–th order moment of the random variable $x$ holds: |
− | :$$m_k=1/2\cdot | + | :$$m_k=1/2\cdot \int_{\rm 0}^{\rm 4} x^k\cdot ( 1-\frac{\it x}{\rm 4}) \hspace{0.1cm}{\rm d}x.$$ |
− | * | + | *This leads to the result: |
:$$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$ | :$$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$ | ||
− | * | + | *From this we obtain for the linear mean $(k= 1)$: |
:$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$ | :$$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$ | ||
− | '''(2)''' | + | '''(2)''' The $(k= 2)$ is $m_2 = 8/3$. |
− | * | + | *From this follows with "Steiner's theorem": |
:$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$ | :$$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$ | ||
− | '''(3)''' | + | '''(3)''' With $m_1 = 4/3$, $m_2 = 8/3$ and $m_3 = 32/5$, the given equation for the third order central moment gives: $\mu_3 = 64/135 \approx 0.474$. |
− | * | + | *From this follows for the "Charlier's skewness": |
:$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$ | :$$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$ | ||
+ | *Due to the asymmetric PDF: $S_x \ne 0$. | ||
− | |||
− | '''(4)''' | + | '''(4)''' Correct are <u>the proposed solutions 1, 3 and 4</u>: |
− | * | + | *For symmetric PDF, all odd moments are zero, including the mean $m_y$. |
− | * | + | *Therefore, according $y$: There is no difference between the moments $m_k$ and the central moments $\mu_k$. |
− | * | + | *The moments $m_k$ with even $k$ are the same for the random variables $x$ and $y$. This is evident from the time averages: |
− | * | + | *Since $x^2(t) = y^2(t)$, for $k = 2n$ the moments are equal too: |
:$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$ | :$$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$ | ||
− | '''(5)''' | + | '''(5)''' With the result of the subtask '''(2)''' holds: |
:$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$ | :$$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$ | ||
− | '''(6)''' | + | '''(6)''' For symmetrical PDF, the fourth-order central moment is equal to the moment $m_4$. |
− | * | + | *From the general equation calculated in subtask '''(1)''' one obtains $\mu_4 = 256/15.$ |
− | * | + | *From this follows for the kurtosis: |
:$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$ | :$$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$ | ||
− | :: | + | ::<u>Note:</u> This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution $(K = 1.8)$ and the Gaussian distribution $(K = 3)$. This is a quantitative evaluation of the fact that here |
− | ::* | + | ::*the outliers are more pronounced than in the case of a uniformly distributed random size, |
− | ::* | + | ::*but due to the limitation less pronounced than with Gaussian sizes. |
− | + | *Then we will prove that the asymmetric triangular PDF $f_x(x)$ has the same kurtosis as shown in the upper sketch on the data sheet: | |
− | :$$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot | + | : $$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$ |
− | * | + | *With the result of the subtask '''(3)''' ⇒ $\sigma_x^2 = 8/9$ it follows: |
− | :$$ | + | :$$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$ |
Line 137: | Line 134: | ||
− | [[Category:Theory of Stochastic Signals: Exercises|^3.3 | + | [[Category:Theory of Stochastic Signals: Exercises|^3.3 Expected Values and Moments^]] |
Latest revision as of 13:19, 18 January 2023
We consider in this exercise two random signals $x(t)$ and $y(t)$ each with triangular PDF, namely
- the one-sided triangular PDF according to the upper graph:
- $$f_x(x)=\left\{ \begin{array}{*{4}{c}} 0.5 \cdot (1-{ x}/{\rm 4}) & \rm for\hspace{0.2cm}{\rm 0 \le {\it x} \le 4},\\\rm 0 & \rm else. \end{array} \right.$$
- the two-sided triangular PDF according to the graph below:
- $$ f_y(y)=\left\{ \begin{array}{*{4}{c}} 0.25 \cdot (1-{ |y|}/{\rm 4}) & \rm for\hspace{0.2cm}{ -4 \le {\it y} \le \rm 4},\\\rm 0 & \rm else. \end{array} \right.$$
To solve this problem, consider the equation for the central moments:
- $$\mu_k=\sum\limits_{\kappa = \rm 0}^{\it k}\left({k} \atop {\kappa}\right)\cdot m_k\cdot(-m_{\rm 1})^{k - \kappa}.$$
Specifically, this equation yields the following results:
- $$\mu_{\rm 1}=0,\hspace{0.5cm}\mu_{\rm 2}=\it m_{\rm 2}-\it m_{\rm 1}^{\rm 2},\hspace{0.5cm}\mu_{\rm 3}=\it m_{\rm 3}-\rm 3\cdot\it m_{\rm 2}\cdot \it m_{\rm 1} {\rm +}\rm 2\cdot\it m_{\rm 1}^{\rm 3},$$
- $$\mu_{\rm 4}=\it m_{\rm 4}-\rm 4\cdot\it m_{\rm 3}\cdot \it m_{\rm 1}\rm +6\cdot\it m_{\rm 2}\cdot\it m_{\rm 1}^{\rm 2}-\rm 3\cdot\it m_{\rm 1}^{\rm 4}.$$
From the central moments of higher order one can derive among others:
- the "Charlier's skewness" $S = {\mu_3}/{\sigma^3}\hspace{0.05cm},$
- the "kurtosis" $K = {\mu_4}/{\sigma^4}\hspace{0.05cm}.$
Hints:
- This exercise belongs to the chapter Expected Values and Moments.
- Reference is made to the section Some common central moments.
Questions
Solution
(1) For the $k$–th order moment of the random variable $x$ holds:
- $$m_k=1/2\cdot \int_{\rm 0}^{\rm 4} x^k\cdot ( 1-\frac{\it x}{\rm 4}) \hspace{0.1cm}{\rm d}x.$$
- This leads to the result:
- $$m_k=\frac{x^{ k+ 1}}{ 2\cdot ( k+ 1)}\Bigg|_{\rm 0}^{\rm 4}-\frac{x^{ k+2}}{8\cdot ( k+2)}\Bigg|_{\rm 0}^{\rm 4}=\frac{\rm 2\cdot \rm 4^{\it k}}{(\it k\rm +1)\cdot (\it k\rm + 2)}.$$
- From this we obtain for the linear mean $(k= 1)$:
- $$m_x=\rm {4}/{3}\hspace{0.15cm}\underline{=1.333}.$$
(2) The $(k= 2)$ is $m_2 = 8/3$.
- From this follows with "Steiner's theorem":
- $$\sigma_x^{\rm 2}={8}/{3}-({4}/{3})^2=\rm {8}/{9}\hspace{0.5cm}\Rightarrow\hspace{0.5cm} \sigma_x\hspace{0.15cm}\underline{\approx \rm 0.943}.$$
(3) With $m_1 = 4/3$, $m_2 = 8/3$ and $m_3 = 32/5$, the given equation for the third order central moment gives: $\mu_3 = 64/135 \approx 0.474$.
- From this follows for the "Charlier's skewness":
- $$S_x=\rm \frac{64/135}{\Big(\sqrt {8/9}\Big)^3}=\frac{\sqrt{8}}{5}\hspace{0.15cm}\underline{\approx 0.566}.$$
- Due to the asymmetric PDF: $S_x \ne 0$.
(4) Correct are the proposed solutions 1, 3 and 4:
- For symmetric PDF, all odd moments are zero, including the mean $m_y$.
- Therefore, according $y$: There is no difference between the moments $m_k$ and the central moments $\mu_k$.
- The moments $m_k$ with even $k$ are the same for the random variables $x$ and $y$. This is evident from the time averages:
- Since $x^2(t) = y^2(t)$, for $k = 2n$ the moments are equal too:
- $$m_k=m_{2 n}=\ \text{...}\int [x^2(t)]^n \hspace{0.1cm}{\rm d} x=\ \text{...}\int [y^2(t)]^n \hspace{0.1cm}{\rm d} y.$$
(5) With the result of the subtask (2) holds:
- $$m_2=\mu_{\rm 2}=\sigma_y^2=\rm {8}/{3} = 2.667\hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_y\hspace{0.15cm}\underline{=1.633}.$$
(6) For symmetrical PDF, the fourth-order central moment is equal to the moment $m_4$.
- From the general equation calculated in subtask (1) one obtains $\mu_4 = 256/15.$
- From this follows for the kurtosis:
- $$K_y=\frac{\mu_{\rm 4}}{\sigma_y^{\rm 4}}=\rm \frac{256/15}{(8/3)^2}\hspace{0.15cm}\underline{=2.4}.$$
- Note: This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution $(K = 1.8)$ and the Gaussian distribution $(K = 3)$. This is a quantitative evaluation of the fact that here
- the outliers are more pronounced than in the case of a uniformly distributed random size,
- but due to the limitation less pronounced than with Gaussian sizes.
- Note: This numerical value is valid for the triangle PDF in general and lies between the kurtosis values of the uniform distribution $(K = 1.8)$ and the Gaussian distribution $(K = 3)$. This is a quantitative evaluation of the fact that here
- Then we will prove that the asymmetric triangular PDF $f_x(x)$ has the same kurtosis as shown in the upper sketch on the data sheet:
- $$\mu_{ 4} = m_{\rm 4}- 4\cdot m_{\rm 3}\cdot m_{\rm 1}+ 6\cdot m_{\rm 2}\cdot m_{\rm 1}^{\rm 2}- 3\cdot m_{\rm 1}^{\rm 4}= \frac{256}{15} - 4 \cdot \frac{32}{5}\cdot \frac{4}{3} + 6 \cdot \frac{8}{3}\cdot \left(\frac{4}{3}\right)^2 -3 \cdot \left(\frac{4}{3}\right)^4 =\frac{256}{15 \cdot 9}$$
- With the result of the subtask (3) ⇒ $\sigma_x^2 = 8/9$ it follows:
- $$ K_x = \frac{{256}/(15 \cdot 9)}{8/9 \cdot 8/9} = 2.4.$$