Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.1Z: Calculation of Moments"

From LNTwww
m (Guenter verschob die Seite 4.01Z Momentenberechnung nach 4.1Z Momentenberechnung)
 
(34 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Differentielle Entropie
+
{{quiz-Header|Buchseite=Information_Theory/Differential_Entropy
 
}}
 
}}
  
[[File:P_ID2863__Inf_Z_4_1.png|right|]]
+
[[File:EN_Inf_Z_4_1_vers2.png|right|frame|Exponential PDF (top), <br>Laplace PDF (bottom)]]
Die Grafik zeigt oben die Wahrscheinlichkeitsdichtefunktion (WDF) der <i>Exponentialverteilung</i>:
+
The upper graph shows the probability density function&nbsp; $\rm (PDF)$&nbsp; of the&nbsp; [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen|exponential distribution]]:
$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm exp}(-\lambda \cdot x) \\ A_{ X}/2 \\ 0 \\  \end{array} \right. f¨urx>0,f¨urx=0,f¨urx<0.$$
+
:$$f_X(x) = \left\{ \begin{array}{c} A_{ X} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm}x} \\ A_{ X}/2 \\ 0 \\  \end{array} \right. f¨urx>0,f¨urx=0,f¨urx<0.$$
Darunter gezeichnet ist die WDF der <i>Laplaceverteilung</i>, die für alle <i>y</i>&ndash;Werte wie folgt angegeben werden kann:
+
Drawn below is the PDF of the&nbsp; [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Zweiseitige_Exponentialverteilung_.E2.80.93_Laplaceverteilung|Laplace distribution]], which can be specified for all&nbsp; $y$&ndash;values as follows:
$$f_Y(y) =  A_{ Y} \cdot {\rm exp}(-\lambda \cdot |y|)\hspace{0.05cm}.$$
+
:$$f_Y(y) =  A_{ Y} \cdot {\rm e}^{-\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} |\hspace{0.03cm}y\hspace{0.03cm}|}\hspace{0.05cm}.$$
Die zwei wertkontinuierlichen Zufallsgrößen <i>X</i> und <i>Y</i> sollen hinsichtlich der folgenden Kenngrößen verglichen werden:
+
 
:*dem linearen Mittelwert <i>m</i><sub>1</sub> (Moment erster Ordnung),
+
The two continuous random variables&nbsp; $X&nbsp; and&nbsp;Y$&nbsp; are to be compared with respect to the following characteristics:
:*dem Moment zweiter Ordnung &nbsp;&#8658;&nbsp; <i>m</i><sub>2</sub>,
+
*The linear mean&nbsp; m1&nbsp; (first order moment),
:*der Varianz <i>&sigma;</i><sup>2</sup> = <i>m</i><sub>2</sub> &ndash; <i>m</i><sub>1</sub><sup>2</sup> (Satz von Steiner), und
+
*the second order moment &nbsp; &#8658; &nbsp; m2,
:*der Streuung <i>&sigma;</i>.
+
*the variance&nbsp; $\sigma^2 = m_2 - m_1^2$ &nbsp; &#8658; &nbsp; Steiner's theorem,  
<b>Hinweis:</b> Die Aufgabe gehört zum [http://en.lntwww.de/Informationstheorie/Differentielle_Entropie '''Kapitel 4.1'''] des vorliegenden Buches. Sie fasst gleichzeitig die erforderlichen Vorkenntnisse von [http://en.lntwww.de/Stochastische_Signaltheorie '''Kapitel 3'''] des Buches „Stochastische Signaltheorie” zusammen. Gegeben sind außerdem die beiden unbestimmten Integrale:
+
*the standard deviation&nbsp; $\sigma$.
xeλxdx=eλx(λ)2(λx1),
+
 
$$\int \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The task belongs to the chapter&nbsp; [[Information_Theory/Differentielle_Entropie|Differential Entropy]].
 +
*Useful hints for solving this task and further information on continuous random variables can be found in the third chapter  "Continuous Random Variables" of the book&nbsp;  [[Theory of Stochastic Signals]].
 +
 +
*Also given are the two indefinite integrals:
 +
:xeλxdx=eλx(λ)2(λx1),
 +
:$$\int \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
 
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3})
 
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3})
 
\hspace{0.05cm}. $$
 
\hspace{0.05cm}. $$
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist der Maximalwert <i>A<sub>X</sub></i> der WDF <i>f<sub>X</sub></i>(<i>x</i>)?
+
{What is the maximum value&nbsp; AX&nbsp; of the PDF&nbsp; $f_X(x)$?
|type="[]"}
+
|type="()"}
- <i>A<sub>X</sub></i> = <i>&lambda;</i>/2,
+
- $A_X = \lambda/2$,
+ <i>A<sub>X</sub></i> = <i>&lambda;</i>,
+
+ $A_X = \lambda$,
- <i>A<sub>X</sub></i> = 1/<i>&lambda;</i>.
+
- $A_X = 1/\lambda$.
  
{Wie groß ist der Maximalwert <i>A<sub>Y</sub></i> der WDF <i>f<sub>Y</sub></i>(<i>y</i>)?
+
{What is the maximum value&nbsp; AY&nbsp; of the PDF&nbsp; $f_Y(y)$?
|type="[]"}
+
|type="()"}
+ <i>A<sub>Y</sub></i> = <i>&lambda;</i>/2,
+
+ $A_Y = \lambda/2$,
- <i>A<sub>Y</sub></i> = <i>&lambda;</i>,
+
- $A_Y = \lambda$,
- <i>A<sub>Y</sub></i> = 1/<i>&lambda;</i>.
+
- $A_Y = 1/\lambda$.
  
  
{Gibt es ein Argument <i>z</i>, so dass <i>f<sub>X</sub></i>(<i>z</i>) =  <i>f<sub>Y</sub></i>(<i>z</i>) gilt?
+
{Is there an argument&nbsp; $z$, such that &nbsp;$f_X(z) =  f_Y(z)$&nbsp;?
|type="[]"}
+
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
  
{Welche Aussagen gelten für die Kenngrößen der Exponentialverteilung?
+
{Which statements are true about the characteristics of the exponential distribution?
 
|type="[]"}
 
|type="[]"}
+ Der lineare Mittelwert ist <i>m</i><sub>1</sub> = 1/<i>&lambda;</i>.
+
+ The linear mean is&nbsp; $m_1 = 1/\lambda$.
+ Der quadratische Mittelwert ist <i>m</i><sub>2</sub> = 2/<i>&lambda;</i><sup>2</sup>.
+
+ The second order moment is&nbsp; $m_2 = 2/\lambda^2$.
+ Die Varianz ist <i>&sigma;</i><sup>2</sup> = 1/<i>&lambda;</i><sup>2</sup>.
+
+ The variance is&nbsp; $\sigma^2 = 1/\lambda^2$.
  
{Welche Aussagen gelten für die Kenngrößen der Laplaceverteilung?
+
{Which statements are true about the characteristics of the Laplace distribution?
 
|type="[]"}
 
|type="[]"}
- Der lineare Mittelwert ist <i>m</i><sub>1</sub> = 1/<i>&lambda;</i>.
+
- The linear mean is&nbsp; $m_1 = 1/\lambda$.
+ Der quadratische Mittelwert ist <i>m</i><sub>2</sub> = 2/<i>&lambda;</i><sup>2</sup>.
+
+ The second order moment is&nbsp; $m_2 = 2/\lambda^2$.
- Die Varianz ist <i>&sigma;</i><sup>2</sup> = 1/<i>&lambda;</i><sup>2</sup>.
+
- The variance is&nbsp; $\sigma^2 = 1/\lambda^2$.
  
{Mit welcher Wahrscheinlichkeiten unterscheidet sich die Zufallsgröße <nobr>(<i>X</i> bzw. <i>Y</i>)</nobr> vom Mittelwert <i>m</i> betragsmäßig um mehr als die Streuung <i>&sigma;</i>?
+
{With what probabilities does the random variable&nbsp; $(X&nbsp; or &nbsp;Y)$&nbsp; differ from the respective mean in magnitude by more than the dispersion &nbsp;$\sigma$?
 
|type="{}"}
 
|type="{}"}
$Exponential: Pr(|X – mX| > σX)$ = { 0.135 3% }
+
$\text{Exponential:}\; \;{\rm Pr}( |X   -  m_X| > \sigma_X) \ = \ $ { 0.135 3% }
$Laplace:   Pr(|Y – mY| > σY)$ = { 0.243 3% }
+
$\text{Laplace:}\; \;{\rm Pr}( |Y   -  m_Y| > \sigma_Y) \ = \ $ { 0.243 3% }
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
<b>a)</b>&nbsp;&nbsp;Die Fläche unter der WDF muss immer 1 sein. Daraus folgt für die Exponentialverteilung:
+
'''(1)'''&nbsp; <u>Proposed solution 2</u> is correct:
$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\left [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\right ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1
+
*The area under the PDF must always be&nbsp; 1&nbsp;.&nbsp; It follows for the exponential distribution:
 +
:$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1
 
  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$
 
  \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$
Richtig ist somit der <u>Lösungsvorschlag 2</u>.
 
  
<b>b)</b>&nbsp;&nbsp;Aus der Grafik auf der Angabenseite erkennt man, dass die Höhe <i>A<sub>Y</sub></i> der Laplaceverteilung nur halb so groß ist wie das Maximum der Exponentialverteilung &nbsp;&#8658;<i>A<sub>Y</sub></i> = <i>&lambda;</i>/2 &nbsp;&#8658;&nbsp;<u>Lösungsvorschlag 1</u>.
 
  
<b>c)</b>&nbsp;&nbsp;Richtig ist <u>JA</u>, obwohl für <i>z</i> &ne; 0 stets <i>f<sub>X</sub></i>(<i>z</i>) &ne; <i>f<sub>Y</sub></i>(<i>z</i>) gilt. Betrachten wir nun den Sonderfall <i>z</i> = 0:
+
'''(2)'''&nbsp; <u>Proposed solution 1</u> is correct:
:* Für die Laplaceverteilung gilt <i>f<sub>Y</sub></i>(0) = <i>&lambda;</i>/2.
+
*From the graph on the information page, we can see that the height&nbsp; AY&nbsp; of the Laplace PDF is only half as large as the maximum of the exponential PDF:
:* Bei der Exponentialverteilung unterscheiden sich der links- und der rechtsseitige Grenzwert für <i>x</i> &#8594; 0. Der WDF&ndash;Wert an der Stelle <i>x</i> = 0 ist der Mittelwert dieser beiden Grenzwerte:
+
:$$A_Y = \lambda/2.$$  
$$f_X(0) = \frac{1}{2} \cdot [ 0 + \lambda] = \lambda/2 =  f_Y(0)\hspace{0.05cm}.$$
+
 
  
<b>d)</b>&nbsp;&nbsp;Bei der Exponentialverteilung erhält man entsprechend [http://en.lntwww.de/Biografien_und_Bibliografien/Buchstaben_A_-_D#Buchstabe_B '''[BS01]'''] für
+
'''(3)'''&nbsp; Correct is <u>YES</u>,&nbsp; although for&nbsp; z0&nbsp; always &nbsp;fX(z)=fY(z). &nbsp;  Let us now consider the special case&nbsp; z=0:
:* den linearen Mittelwert (Moment erster Ordnung):  
+
* For the Laplace PDF:&nbsp; $f_Y(y = 0) = \lambda/2$.
m1=λ0xeλxdx=λ[eλx(λ)2(λx1)]0=1/λ,
+
* For the exponential PDF,&nbsp; the left-hand and right-hand limits differ for&nbsp; x0.
:* den quadratischen Mittelwert  (Moment zweiter Ordnung):
+
*The PDF value at point&nbsp; x=0&nbsp; is the average of these two limits:
$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
+
:$$f_X(0) = \frac{1}{2} \cdot \big [ 0 + \lambda \big] = \lambda/2 =  f_Y(0)\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>All proposed solutions</u> are correct.&nbsp;
 +
 
 +
For the exponential distribution, the&nbsp; k&ndash;th order moment is generally calculated to be
 +
:mk=k!λkm1=1λ,m2=2λ2,m3=6λ3, ...
 +
Thus one obtains for
 +
* the linear mean (first order moment):
 +
:m1=λ0xeλxdx=λ[eλx(λ)2(λx1)]0=1/λ,
 +
* the second order moment:
 +
:$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot
 
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3})
 
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3})
 
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$
 
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$
Daraus ergibt sich mit dem Satz von Steiner für die Varianz der Exponentialverteilung:
+
From this, using Steiner's theorem for the variance of the exponential distribution, we get:
$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2}  
+
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\sigma = {1}/{\lambda}\hspace{0.05cm}.$$
 
\sigma = {1}/{\lambda}\hspace{0.05cm}.$$
Richtig sind also <u>alle Lösungsvorschläge</u>. &nbsp;<i>Hinweis:</i> Bei der Exponentialverteilung berechnet sich das Moment <i>k</i>&ndash;ter Ordnung allgemein zu <i>m<sub>k</sub></i> = <i>k</i>!/<i>&lambda;</i><sup><i>k</i></sup> &nbsp;&nbsp;&#8658;&nbsp;&nbsp; <i>m</i><sub>1</sub> = 1/<i>&lambda;</i>,&nbsp;&nbsp; <i>m</i><sub>2</sub> = 2/<i>&lambda;</i><sup>2</sup>, &nbsp;&nbsp; <i>m</i><sub>3</sub> = 6/<i>&lambda;</i><sup>3</sup>, ...
 
  
<b>e)</b>&nbsp;&nbsp;Richtig ist nur der <u>Lösungsvorschlag 2</u>: Der quadratische Mittelwert der Laplaceverteilung ist aufgrund der symmetrischen WDF genau so groß wie bei der Exponentialverteilung:
+
 
m2=λ2y2eλ|y|dy=λ0y2eλydy=2/λ2.
+
[[File:EN_Inf_A_4_3.png|right|frame|To illustrate the sample solution to problem&nbsp; '''(5)''']]
Der Mittelwert  der Laplaceverteilung ist <i>m</i><sub>1</sub> = 0. Damit ist die Varianz der Laplaceverteilung doppelt so groß wie bei der Exponentialverteilung:
+
'''(5)'''&nbsp; Only the <u>proposed solution 2</u> is correct:  
$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2}  
+
*The second moment of&nbsp; "Laplace"&nbsp; is the same as for the exponential distribution because of the symmetric PDF:
 +
:m2=λ2y2eλ|y|dy=λ0y2eλydy=2/λ2.
 +
 
 +
*In contrast, the mean of the Laplace distribution is&nbsp; $m_1 = 0$.  
 +
*Thus, the variance of the Laplace distribution is twice that of the exponential distribution:
 +
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\hspace{0.3cm} \Rightarrow\hspace{0.3cm}  
 
\sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$
 
\sigma = {\sqrt{2}}/{\lambda}\hspace{0.05cm}.$$
  
[[File:P_ID2864__Inf_Z_4_1f_neu.png|right|]]
 
  
<b>f)</b>&nbsp;&nbsp;Für die Exponentialverteilung ergibt sich  entsprechend der oberen Grafik mit <i>m<sub>X</sub></i> = <i>&sigma;<sub>X</sub></i> = 1/<i>&#955;</i>:
+
'''(6)'''&nbsp; For the exponential distribution, according to the upper graph with&nbsp; $m_X = \sigma_X = 1/\lambda$:
$${\rm Pr}( |X  -  m_X| > \sigma_X) =
+
:$${\rm Pr}( |X  -  m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm}
{\rm Pr}( X > 2/\lambda) \
+
{\rm Pr}( X > 2/\lambda)  
  =   \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x =  
+
  \hspace{-0.05cm} = \hspace{-0.05cm}  \lambda \cdot\int_{2/\lambda}^{\infty} \hspace{-0.08cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x =  
 
  -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
 
  -\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
\right ]_{2/\lambda}^{\infty}\
+
\right ]_{2/\lambda}^{\infty}
   =  {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}\hspace{0.05cm}.$$
+
   =  {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$
Für die Laplaceverteilung (untere Grafik) erhält man mit <i>m<sub>Y</sub></i>&nbsp;=&nbsp;0 und <i>&sigma;<sub>Y</sub></i>&nbsp;=&nbsp;2<sup>0.5</sup>/<i>&lambda;</i>:
+
For the Laplace distribution (lower graph),&nbsp; with &nbsp;$m_Y = 0$&nbsp; and &nbsp;$\sigma_Y = \sqrt{2}/\lambda$ we obtain::
$${\rm Pr}( |Y  -  m_Y| > \sigma_Y) =
+
:$${\rm Pr}( |Y  -  m_Y| > \sigma_Y) =
2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) \
+
2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda)  
  =    2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x =  
+
  =    2 \cdot \frac{\lambda}{2} \cdot\int_{\sqrt{2}/\lambda}^{\infty} \hspace{-0.01cm}  {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x $$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}( |Y  -  m_Y| > \sigma_Y) =
 
\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
 
\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}
\right ]_{\sqrt{2}/\lambda}^{\infty}\
+
\right ]_{\sqrt{2}/\lambda}^{\infty}
 
  = -  {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$
 
  = -  {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$
  
Ein Vergleich der schraffierten Flächen in nebenstehender Grafik bestätigt das Ergebnis qualitativ: Die blauen Flächen sind zusammen etwas größer als die rote Fläche.
+
A comparison of the shaded areas in the accompanying graph qualitatively confirms the result: <br> &rArr; &nbsp;  The blue areas together are slightly larger than the red area.
 +
 
 +
 
  
  
Line 120: Line 151:
  
  
[[Category:Aufgaben zu Informationstheorie|^4.1  Differentielle Entropie^]]
+
[[Category:Information Theory: Exercises|^4.1  Differential Entropy^]]

Latest revision as of 14:19, 18 January 2023

Exponential PDF (top),
Laplace PDF (bottom)

The upper graph shows the probability density function  (PDF)  of the  exponential distribution:

fX(x)={AXeλxAX/20f¨urx>0,f¨urx=0,f¨urx<0.

Drawn below is the PDF of the  Laplace distribution, which can be specified for all  y–values as follows:

fY(y)=AYeλ|y|.

The two continuous random variables  X  and  Y  are to be compared with respect to the following characteristics:

  • The linear mean  m1  (first order moment),
  • the second order moment   ⇒   m2,
  • the variance  σ2=m2m21   ⇒   Steiner's theorem,
  • the standard deviation  σ.





Hints:

  • The task belongs to the chapter  Differential Entropy.
  • Useful hints for solving this task and further information on continuous random variables can be found in the third chapter "Continuous Random Variables" of the book  Theory of Stochastic Signals.
  • Also given are the two indefinite integrals:
xeλxdx=eλx(λ)2(λx1),
x2eλxdx=eλx(x2λ2xλ2+2λ3).


Questions

1

What is the maximum value  AX  of the PDF  fX(x)?

AX=λ/2,
AX=λ,
AX=1/λ.

2

What is the maximum value  AY  of the PDF  fY(y)?

AY=λ/2,
AY=λ,
AY=1/λ.

3

Is there an argument  z, such that  fX(z)=fY(z) ?

Yes.
No.

4

Which statements are true about the characteristics of the exponential distribution?

The linear mean is  m1=1/λ.
The second order moment is  m2=2/λ2.
The variance is  σ2=1/λ2.

5

Which statements are true about the characteristics of the Laplace distribution?

The linear mean is  m1=1/λ.
The second order moment is  m2=2/λ2.
The variance is  σ2=1/λ2.

6

With what probabilities does the random variable  (X  or   Y)  differ from the respective mean in magnitude by more than the dispersion  σ?

Exponential:Pr(|XmX|>σX) = 

Laplace:Pr(|YmY|>σY) = 


Solution

(1)  Proposed solution 2 is correct:

  • The area under the PDF must always be  1 .  It follows for the exponential distribution:
AX0eλxdx=AX(1/λ)[eλx]0=AX(1/λ)!=1AX=λ.


(2)  Proposed solution 1 is correct:

  • From the graph on the information page, we can see that the height  AY  of the Laplace PDF is only half as large as the maximum of the exponential PDF:
AY=λ/2.


(3)  Correct is YES,  although for  z0  always  fX(z)=fY(z).   Let us now consider the special case  z=0:

  • For the Laplace PDF:  fY(y=0)=λ/2.
  • For the exponential PDF,  the left-hand and right-hand limits differ for  x0.
  • The PDF value at point  x=0  is the average of these two limits:
fX(0)=12[0+λ]=λ/2=fY(0).


(4)  All proposed solutions are correct. 

For the exponential distribution, the  k–th order moment is generally calculated to be

mk=k!λkm1=1λ,m2=2λ2,m3=6λ3, ...

Thus one obtains for

  • the linear mean (first order moment):
m1=λ0xeλxdx=λ[eλx(λ)2(λx1)]0=1/λ,
  • the second order moment:
m2=λ0x2eλxdx=λ[eλx(x2λ2xλ2+2λ3)]0=2/λ2.

From this, using Steiner's theorem for the variance of the exponential distribution, we get:

σ2=m2m21=2/λ21/λ2=1/λ2σ=1/λ.


To illustrate the sample solution to problem  (5)

(5)  Only the proposed solution 2 is correct:

  • The second moment of  "Laplace"  is the same as for the exponential distribution because of the symmetric PDF:
m2=λ2y2eλ|y|dy=λ0y2eλydy=2/λ2.
  • In contrast, the mean of the Laplace distribution is  m1=0.
  • Thus, the variance of the Laplace distribution is twice that of the exponential distribution:
σ2=m2m21=2/λ20=2/λ2σ=2/λ.


(6)  For the exponential distribution, according to the upper graph with  mX=σX=1/λ:

Pr(|XmX|>σX)=Pr(X>2/λ)=λ2/λeλxdx=[eλx]2/λ=e20.135_.

For the Laplace distribution (lower graph),  with  mY=0  and  σY=2/λ we obtain::

Pr(|YmY|>σY)=2Pr(Y>2/λ)=2λ22/λeλxdx
Pr(|YmY|>σY)=[eλx]2/λ=e20.243_.

A comparison of the shaded areas in the accompanying graph qualitatively confirms the result:
⇒   The blue areas together are slightly larger than the red area.