Difference between revisions of "Aufgaben:Exercise 4.1Z: Calculation of Moments"
m (Text replacement - "”" to """) |
|||
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Information_Theory/Differential_Entropy |
}} | }} | ||
− | [[File: | + | [[File:EN_Inf_Z_4_1_vers2.png|right|frame|Exponential PDF (top), <br>Laplace PDF (bottom)]] |
− | + | The upper graph shows the probability density function $\rm (PDF)$ of the [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen|exponential distribution]]: | |
:fX(x)={AX⋅e−λ⋅xAX/20f¨urx>0,f¨urx=0,f¨urx<0. | :fX(x)={AX⋅e−λ⋅xAX/20f¨urx>0,f¨urx=0,f¨urx<0. | ||
− | + | Drawn below is the PDF of the [[Theory_of_Stochastic_Signals/Exponentialverteilte_Zufallsgrößen#Zweiseitige_Exponentialverteilung_.E2.80.93_Laplaceverteilung|Laplace distribution]], which can be specified for all y–values as follows: | |
:fY(y)=AY⋅e−λ⋅|y|. | :fY(y)=AY⋅e−λ⋅|y|. | ||
− | + | The two continuous random variables X and Y are to be compared with respect to the following characteristics: | |
− | * | + | *The linear mean m1 (first order moment), |
− | * | + | *the second order moment ⇒ m2, |
− | * | + | *the variance σ2=m2−m21 ⇒ Steiner's theorem, |
− | * | + | *the standard deviation σ. |
Line 22: | Line 22: | ||
− | + | Hints: | |
− | * | + | *The task belongs to the chapter [[Information_Theory/Differentielle_Entropie|Differential Entropy]]. |
− | * | + | *Useful hints for solving this task and further information on continuous random variables can be found in the third chapter "Continuous Random Variables" of the book [[Theory of Stochastic Signals]]. |
− | * | + | *Also given are the two indefinite integrals: |
:∫x⋅e−λ⋅xdx=e−λ⋅x(−λ)2⋅(−λ⋅x−1), | :∫x⋅e−λ⋅xdx=e−λ⋅x(−λ)2⋅(−λ⋅x−1), | ||
:$$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | :$$\int \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | ||
Line 33: | Line 33: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the maximum value AX of the PDF fX(x)? |
|type="()"} | |type="()"} | ||
- AX=λ/2, | - AX=λ/2, | ||
Line 42: | Line 42: | ||
- AX=1/λ. | - AX=1/λ. | ||
− | { | + | {What is the maximum value AY of the PDF fY(y)? |
|type="()"} | |type="()"} | ||
+ AY=λ/2, | + AY=λ/2, | ||
Line 49: | Line 49: | ||
− | { | + | {Is there an argument z, such that fX(z)=fY(z) ? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes. |
− | - | + | - No. |
− | { | + | {Which statements are true about the characteristics of the exponential distribution? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The linear mean is m1=1/λ. |
− | + | + | + The second order moment is m2=2/λ2. |
− | + | + | + The variance is σ2=1/λ2. |
− | { | + | {Which statements are true about the characteristics of the Laplace distribution? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The linear mean is m1=1/λ. |
− | + | + | + The second order moment is m2=2/λ2. |
− | - | + | - The variance is σ2=1/λ2. |
− | { | + | {With what probabilities does the random variable (X or Y) differ from the respective mean in magnitude by more than the dispersion σ? |
|type="{}"} | |type="{}"} | ||
Exponential:Pr(|X−mX|>σX) = { 0.135 3% } | Exponential:Pr(|X−mX|>σX) = { 0.135 3% } | ||
Line 75: | Line 75: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Proposed solution 2</u> is correct: |
− | * | + | *The area under the PDF must always be 1 . It follows for the exponential distribution: |
:$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 | :$$A_{X} \cdot\int_{0}^{\infty} \hspace{-0.01cm} {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = A_{X} \cdot (-1/\lambda)\cdot\big [{\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\big ]_{0}^{\infty} = A_{X} \cdot (1/\lambda) \stackrel{!}{=} 1 | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$ | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} A_{X} = \lambda \hspace{0.05cm}. $$ | ||
− | + | '''(2)''' <u>Proposed solution 1</u> is correct: | |
− | '''(2)''' | + | *From the graph on the information page, we can see that the height AY of the Laplace PDF is only half as large as the maximum of the exponential PDF: |
− | * | ||
:AY=λ/2. | :AY=λ/2. | ||
− | + | '''(3)''' Correct is <u>YES</u>, although for z≠0 always fX(z)=fY(z). Let us now consider the special case z=0: | |
− | '''(3)''' | + | * For the Laplace PDF: fY(y=0)=λ/2. |
− | * | + | * For the exponential PDF, the left-hand and right-hand limits differ for x→0. |
− | * | + | *The PDF value at point x=0 is the average of these two limits: |
− | * | ||
:fX(0)=12⋅[0+λ]=λ/2=fY(0). | :fX(0)=12⋅[0+λ]=λ/2=fY(0). | ||
+ | '''(4)''' <u>All proposed solutions</u> are correct. | ||
− | + | For the exponential distribution, the k–th order moment is generally calculated to be | |
− | |||
− | |||
:mk=k!λk⇒m1=1λ,m2=2λ2,m3=6λ3, ... | :mk=k!λk⇒m1=1λ,m2=2λ2,m3=6λ3, ... | ||
− | + | Thus one obtains for | |
− | * | + | * the linear mean (first order moment): |
:m1=λ⋅∫∞0x⋅e−λ⋅xdx=λ⋅[e−λ⋅x(−λ)2⋅(−λ⋅x−1)]∞0=1/λ, | :m1=λ⋅∫∞0x⋅e−λ⋅xdx=λ⋅[e−λ⋅x(−λ)2⋅(−λ⋅x−1)]∞0=1/λ, | ||
− | * | + | * the second order moment: |
:$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | :$$m_2 = \lambda \cdot\int_{0}^{\infty} \hspace{-0.01cm} x^2 \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.1cm}{\rm d}x = \lambda \cdot\left [ {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\cdot | ||
(\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) | (\frac{x^2}{-\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3}) | ||
\right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$ | \right ]_{0}^{\infty} ={2}/{\lambda^2} \hspace{0.05cm}.$$ | ||
− | + | From this, using Steiner's theorem for the variance of the exponential distribution, we get: | |
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} | :$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} -{1}/{\lambda^2} = {1}/{\lambda^2} | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | ||
Line 115: | Line 112: | ||
− | + | [[File:EN_Inf_A_4_3.png|right|frame|To illustrate the sample solution to problem '''(5)''']] | |
− | '''(5)''' | + | '''(5)''' Only the <u>proposed solution 2</u> is correct: |
− | * | + | *The second moment of "Laplace" is the same as for the exponential distribution because of the symmetric PDF: |
− | |||
:m2=λ2⋅∫∞−∞y2⋅e−λ⋅|y|dy=λ⋅∫∞0y2⋅e−λ⋅ydy=2/λ2. | :m2=λ2⋅∫∞−∞y2⋅e−λ⋅|y|dy=λ⋅∫∞0y2⋅e−λ⋅ydy=2/λ2. | ||
− | * | + | *In contrast, the mean of the Laplace distribution is m1=0. |
− | * | + | *Thus, the variance of the Laplace distribution is twice that of the exponential distribution: |
:$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} | :$$\sigma^2 = m_2 - m_1^2 = {2}/{\lambda^2} - 0 ={2}/{\lambda^2} | ||
\hspace{0.3cm} \Rightarrow\hspace{0.3cm} | \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | ||
Line 128: | Line 124: | ||
− | + | '''(6)''' For the exponential distribution, according to the upper graph with mX=σX=1/λ: | |
− | |||
− | '''(6)''' | ||
:$${\rm Pr}( |X - m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm} | :$${\rm Pr}( |X - m_X| > \sigma_X) \hspace{-0.05cm} = \hspace{-0.05cm} | ||
{\rm Pr}( X > 2/\lambda) | {\rm Pr}( X > 2/\lambda) | ||
Line 137: | Line 131: | ||
\right ]_{2/\lambda}^{\infty} | \right ]_{2/\lambda}^{\infty} | ||
= {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$ | = {\rm e}^{-2} \hspace{0.15cm}\underline {\approx 0.135}.$$ | ||
− | + | For the Laplace distribution (lower graph), with mY=0 and σY=√2/λ we obtain:: | |
:$${\rm Pr}( |Y - m_Y| > \sigma_Y) = | :$${\rm Pr}( |Y - m_Y| > \sigma_Y) = | ||
2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) | 2 \cdot {\rm Pr}( Y > \sqrt{2}/\lambda) | ||
Line 146: | Line 140: | ||
= - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$ | = - {\rm e}^{-\sqrt{2}} \hspace{0.15cm}\underline {\approx 0.243}\hspace{0.05cm}.$$ | ||
− | + | A comparison of the shaded areas in the accompanying graph qualitatively confirms the result: <br> ⇒ The blue areas together are slightly larger than the red area. | |
Line 157: | Line 151: | ||
− | [[Category:Information Theory: Exercises|^4.1 | + | [[Category:Information Theory: Exercises|^4.1 Differential Entropy^]] |
Latest revision as of 14:19, 18 January 2023
The upper graph shows the probability density function (PDF) of the exponential distribution:
- fX(x)={AX⋅e−λ⋅xAX/20f¨urx>0,f¨urx=0,f¨urx<0.
Drawn below is the PDF of the Laplace distribution, which can be specified for all y–values as follows:
- fY(y)=AY⋅e−λ⋅|y|.
The two continuous random variables X and Y are to be compared with respect to the following characteristics:
- The linear mean m1 (first order moment),
- the second order moment ⇒ m2,
- the variance σ2=m2−m21 ⇒ Steiner's theorem,
- the standard deviation σ.
Hints:
- The task belongs to the chapter Differential Entropy.
- Useful hints for solving this task and further information on continuous random variables can be found in the third chapter "Continuous Random Variables" of the book Theory of Stochastic Signals.
- Also given are the two indefinite integrals:
- ∫x⋅e−λ⋅xdx=e−λ⋅x(−λ)2⋅(−λ⋅x−1),
- ∫x2⋅e−λ⋅xdx=e−λ⋅x⋅(x2−λ−2xλ2+2λ3).
Questions
Solution
- The area under the PDF must always be 1 . It follows for the exponential distribution:
- AX⋅∫∞0e−λ⋅xdx=AX⋅(−1/λ)⋅[e−λ⋅x]∞0=AX⋅(1/λ)!=1⇒AX=λ.
(2) Proposed solution 1 is correct:
- From the graph on the information page, we can see that the height AY of the Laplace PDF is only half as large as the maximum of the exponential PDF:
- AY=λ/2.
(3) Correct is YES, although for z≠0 always fX(z)=fY(z). Let us now consider the special case z=0:
- For the Laplace PDF: fY(y=0)=λ/2.
- For the exponential PDF, the left-hand and right-hand limits differ for x→0.
- The PDF value at point x=0 is the average of these two limits:
- fX(0)=12⋅[0+λ]=λ/2=fY(0).
(4) All proposed solutions are correct.
For the exponential distribution, the k–th order moment is generally calculated to be
- mk=k!λk⇒m1=1λ,m2=2λ2,m3=6λ3, ...
Thus one obtains for
- the linear mean (first order moment):
- m1=λ⋅∫∞0x⋅e−λ⋅xdx=λ⋅[e−λ⋅x(−λ)2⋅(−λ⋅x−1)]∞0=1/λ,
- the second order moment:
- m2=λ⋅∫∞0x2⋅e−λ⋅xdx=λ⋅[e−λ⋅x⋅(x2−λ−2xλ2+2λ3)]∞0=2/λ2.
From this, using Steiner's theorem for the variance of the exponential distribution, we get:
- σ2=m2−m21=2/λ2−1/λ2=1/λ2⇒σ=1/λ.
(5) Only the proposed solution 2 is correct:
- The second moment of "Laplace" is the same as for the exponential distribution because of the symmetric PDF:
- m2=λ2⋅∫∞−∞y2⋅e−λ⋅|y|dy=λ⋅∫∞0y2⋅e−λ⋅ydy=2/λ2.
- In contrast, the mean of the Laplace distribution is m1=0.
- Thus, the variance of the Laplace distribution is twice that of the exponential distribution:
- σ2=m2−m21=2/λ2−0=2/λ2⇒σ=√2/λ.
(6) For the exponential distribution, according to the upper graph with mX=σX=1/λ:
- Pr(|X−mX|>σX)=Pr(X>2/λ)=λ⋅∫∞2/λe−λ⋅xdx=−[e−λ⋅x]∞2/λ=e−2≈0.135_.
For the Laplace distribution (lower graph), with mY=0 and σY=√2/λ we obtain::
- Pr(|Y−mY|>σY)=2⋅Pr(Y>√2/λ)=2⋅λ2⋅∫∞√2/λe−λ⋅xdx
- ⇒Pr(|Y−mY|>σY)=[e−λ⋅x]∞√2/λ=−e−√2≈0.243_.
A comparison of the shaded areas in the accompanying graph qualitatively confirms the result:
⇒ The blue areas together are slightly larger than the red area.