Difference between revisions of "Aufgaben:Exercise 2.2: Multi-Level Signals"
From LNTwww
(22 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable |
}} | }} | ||
− | |||
− | |||
− | + | [[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-level signals]] | |
+ | Let the rectangular signal $x(t)$ be dimensionless and can only have the current values $0, \ 1, \ 2, \ \text{...} \ , \ M-2, \ M-1$ with equal probability. The upper graph shows this signal for the special case M=5. | ||
− | + | The rectangular zero mean signal y(t) can also assume M different values. | |
− | + | *It is restricted to the range from −y0≤y≤+y0. | |
− | + | *In the graph below you can see the signal y(t), again for the level number M=5. | |
− | * | ||
− | |||
− | === | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | Hints: | ||
+ | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]]. | ||
+ | *Fur numerical calculations, use $y_0 = \rm 2\hspace{0.05cm}V$. | ||
+ | *The topic of this chapter is illustrated with examples in the (German language) learning video<br> [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] ⇒ "Calculating Moments for Discrete-Valued Random Variables" | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the linear mean mx of the random variable x for M=5? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $m_x \ = \ $ { 2 3% } |
− | { | + | {What is the variance σ2x of the random variable x in general and for M=5? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $\sigma_x^2\ = \ $ { 2 3% } |
− | { | + | {Calculate the mean my of the random variable y for M=5. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $m_y \ = \ 0.\ \rm V$ |
− | { | + | {What is the variance σ2y of the random variable y in general and for M=5? Consider the result from '''(2)'''. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $\sigma_y^2\ = \ { 2 3% }\ \rm V^2$ |
Line 41: | Line 53: | ||
</quiz> | </quiz> | ||
− | === | + | |
+ | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | |||
− | |||
− | + | '''(1)''' One obtains by averaging over all possible signal values for the linear mean: | |
+ | :mx=M−1∑μ=0pμ⋅xμ=1M⋅M−1∑μ=0μ=1M⋅(M−1)⋅M2=M−12. | ||
+ | |||
+ | *In the special case M=5 the linear mean results in mx=2_. | ||
+ | |||
+ | |||
+ | |||
+ | '''(2)''' Analogously to '''(1)''' one obtains for the second moment (second order moment): | ||
+ | : m2x=M−1∑μ=0pμ⋅x2μ=1M⋅M−1∑μ=0μ2=1M⋅(M−1)⋅M⋅(2M−1)6=(M−1)⋅(2M−1)6. | ||
+ | |||
+ | *In the special case M=5 the second moment m2x=6. | ||
+ | *From this, the variance can be calculated using Steiner's theorem: | ||
+ | :σ2x=m2x−m2x=(M−1)⋅(2M−1)6−(M−1)24=M2−112. | ||
− | + | *In the special case M=5 the result for the variance $\sigma_x^2 \;\underline{= 2}$. | |
− | |||
− | |||
− | |||
− | |||
− | '''(3)''' | + | '''(3)''' Because of the symmetry of y, it holds independently of M: |
+ | :$$m_y \;\underline{= 0}.$$ | ||
− | '''(4)''' | + | '''(4)''' The following relation holds between x(t) and y(t): |
− | $$y(t)=\frac{2\cdot | + | :$$y(t)=\frac{2\cdot y_{\rm 0}}{M-\rm 1}\cdot \big[x(t)-m_x\big].$$ |
− | + | *From this it follows for the variances: | |
− | σ2y=4⋅y20(M−1)2⋅σ2x=y20⋅(M2−1)3⋅(M−1)2=y20⋅(M+1)3⋅(M−1). | + | : σ2y=4⋅y20(M−1)2⋅σ2x=y20⋅(M2−1)3⋅(M−1)2=y20⋅(M+1)3⋅(M−1). |
− | + | *In the special case M=5 this results in: | |
− | σ2y=y20⋅63⋅4=2V2_. | + | :σ2y=y20⋅63⋅4=2V2_. |
− | |||
− | [[Category: | + | [[Category:Theory of Stochastic Signals: Exercises|^2.2 Moments of Discrete Random Variables^]] |
Latest revision as of 14:20, 18 January 2023
Let the rectangular signal x(t) be dimensionless and can only have the current values 0, 1, 2, ... , M−2, M−1 with equal probability. The upper graph shows this signal for the special case M=5.
The rectangular zero mean signal y(t) can also assume M different values.
- It is restricted to the range from −y0≤y≤+y0.
- In the graph below you can see the signal y(t), again for the level number M=5.
Hints:
- The exercise belongs to the chapter Moments of a Discrete Random Variable.
- Fur numerical calculations, use y0=2V.
- The topic of this chapter is illustrated with examples in the (German language) learning video
"Momentenberechnung bei diskreten Zufallsgrößen" ⇒ "Calculating Moments for Discrete-Valued Random Variables"
Questions
Solution
(1) One obtains by averaging over all possible signal values for the linear mean:
- mx=M−1∑μ=0pμ⋅xμ=1M⋅M−1∑μ=0μ=1M⋅(M−1)⋅M2=M−12.
- In the special case M=5 the linear mean results in mx=2_.
(2) Analogously to (1) one obtains for the second moment (second order moment):
- m2x=M−1∑μ=0pμ⋅x2μ=1M⋅M−1∑μ=0μ2=1M⋅(M−1)⋅M⋅(2M−1)6=(M−1)⋅(2M−1)6.
- In the special case M=5 the second moment m2x=6.
- From this, the variance can be calculated using Steiner's theorem:
- σ2x=m2x−m2x=(M−1)⋅(2M−1)6−(M−1)24=M2−112.
- In the special case M=5 the result for the variance σ2x=2_.
(3) Because of the symmetry of y, it holds independently of M:
- my=0_.
(4) The following relation holds between x(t) and y(t):
- y(t)=2⋅y0M−1⋅[x(t)−mx].
- From this it follows for the variances:
- σ2y=4⋅y20(M−1)2⋅σ2x=y20⋅(M2−1)3⋅(M−1)2=y20⋅(M+1)3⋅(M−1).
- In the special case M=5 this results in:
- σ2y=y20⋅63⋅4=2V2_.