Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.2: Multi-Level Signals"

From LNTwww
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Wahrscheinlichkeit und relative Häufigkeit
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable
 
}}
 
}}
  
  
[[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-stepped signals]]
+
[[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-level signals]]
 
Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.
 
Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.
  
  
The rectangular signal&nbsp; y(t)&nbsp; is also&nbsp; M&ndash;stepped, but zero mean and restricted to the range from&nbsp; $y > -y_0&nbsp; to&nbsp;y < +y_0$&nbsp; .  
+
The rectangular zero mean signal&nbsp; y(t)&nbsp; can also assume&nbsp; M&nbsp; different values.&nbsp;  
 
+
*It is restricted to the range from&nbsp; $ -y_0 \le y \le +y_0$.  
 
+
*In the graph below you can see the signal&nbsp; y(t), again for the level number&nbsp; M=5.  
In the graph below you can see the signal&nbsp; y(t), again for the number of steps&nbsp; M=5.  
 
 
 
 
 
 
 
  
  
Line 23: Line 19:
 
Hints:
 
Hints:
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
   
+
*Fur numerical calculations,&nbsp; use&nbsp; y0=2V.  
**The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]]&nbsp; &nbsp; Calculating Moments for Discrete-Valued Random Variables  
+
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> &nbsp; &nbsp; [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] &nbsp; &rArr; &nbsp; "Calculating Moments for Discrete-Valued Random Variables"
*Fur numerical calculations, use&nbsp; y0=2V.
+
 
  
  
Line 49: Line 45:
  
  
{What is the variance&nbsp; σ2y&nbsp; of the random variable&nbsp; y?&nbsp; Consider the result from&nbsp; '''(2)'''.&nbsp; What is the value again for&nbsp; M=5?
+
{What is the variance&nbsp; σ2y&nbsp; of the random variable&nbsp; $y&nbsp; in general and for&nbsp;M= 5$?&nbsp; Consider the result from&nbsp; '''(2)'''.
 
|type="{}"}
 
|type="{}"}
 
σ2y =  { 2 3% }  V2
 
σ2y =  { 2 3% }  V2
Line 60: Line 56:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Man erh&auml;lt durch Mittelung über alle möglichen Signalwerte für den linearen Mittelwert:
 
:mx=M1μ=0pμxμ=1MM1μ=0μ=1M(M1)M2=M12.
 
 
*Im Sonderfall&nbsp; M=5&nbsp; ergibt sich der lineare Mittelwert zu&nbsp; mx=2_.
 
 
 
 
'''(2)'''&nbsp; Analog gilt f&uuml;r den quadratischen Mittelwert:
 
:m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
 
 
*Im Sonderfall M=5&nbsp; ergibt sich der quadratische Mittelwert zu&nbsp; m2x=6.
 
*Daraus kann die Varianz mit dem Satz von Steiner berechnet werden:
 
:σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
 
 
*Im Sonderfall&nbsp; M=5&nbsp; ergibt sich für die Varianz&nbsp; σ2x=2_.
 
 
 
 
'''(3)'''&nbsp; Aufgrund der Symmetrie von&nbsp; y&nbsp; gilt unabh&auml;ngig von&nbsp; M:
 
:mx=2_.
 
 
 
 
'''(4)'''&nbsp; Zwischen&nbsp; x(t)&nbsp;  und&nbsp; y(t)&nbsp; gilt folgender Zusammenhang:
 
:y(t)=2y0M1[x(t)mx].
 
 
*Daraus folgt f&uuml;r die Varianzen:
 
:σ2y=4y20(M1)2σ2x=y20(M21)3(M1)2=y20(M+1)3(M1).
 
 
*Im Sonderfall&nbsp; M=5&nbsp; ergibt sich hierfür:
 
:σ2y=y20634=2V2_.
 
 
{{ML-Fuß}}
 
  
 
'''(1)'''&nbsp; One obtains by averaging over all possible signal values for the linear mean:
 
'''(1)'''&nbsp; One obtains by averaging over all possible signal values for the linear mean:
Line 101: Line 64:
  
  
'''(2)'''&nbsp; Analogously, for the root mean square:
+
'''(2)'''&nbsp; Analogously to&nbsp; '''(1)'''&nbsp; one obtains for the second moment&nbsp; (second order moment):
 
: m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
 
: m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
  
*In the special case M=5&nbsp; the root mean square results in&nbsp; m2x=6.  
+
*In the special case M=5&nbsp; the second moment&nbsp; m2x=6.  
 
*From this, the variance can be calculated using Steiner's theorem:
 
*From this, the variance can be calculated using Steiner's theorem:
 
:σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
 
:σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
Line 112: Line 75:
  
  
'''(3)'''&nbsp; Because of the symmetry of&nbsp; y&nbsp;, holds independently of&nbsp; M:  
+
'''(3)'''&nbsp; Because of the symmetry of&nbsp; y,&nbsp; it holds independently of&nbsp; M:  
:$$m_x \;\underline{= 2}.$$
+
:$$m_y \;\underline{= 0}.$$
 
 
  
  
'''(4)'''&nbsp; Between&nbsp; x(t)&nbsp; and&nbsp; y(t)&nbsp; the following relation holds:  
+
'''(4)'''&nbsp; The following relation holds between&nbsp; x(t)&nbsp; and&nbsp; y(t):  
 
:y(t)=2y0M1[x(t)mx].
 
:y(t)=2y0M1[x(t)mx].
  

Latest revision as of 14:20, 18 January 2023


Two similar multi-level signals

Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.


The rectangular zero mean signal  y(t)  can also assume  M  different values. 

  • It is restricted to the range from  y0y+y0.
  • In the graph below you can see the signal  y(t), again for the level number  M=5.




Hints:




Questions

1

What is the linear mean  mx  of the random variable  x  for  M=5?

mx = 

2

What is the variance  σ2x  of the random variable  x  in general and for  M=5?

σ2x = 

3

Calculate the mean  my  of the random variable  y  for  M=5.

my = 

 V

4

What is the variance  σ2y  of the random variable  y  in general and for  M=5?  Consider the result from  (2).

σ2y = 

 V2


Solution

(1)  One obtains by averaging over all possible signal values for the linear mean:

mx=M1μ=0pμxμ=1MM1μ=0μ=1M(M1)M2=M12.
  • In the special case  M=5  the linear mean results in  mx=2_.


(2)  Analogously to  (1)  one obtains for the second moment  (second order moment):

m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
  • In the special case M=5  the second moment  m2x=6.
  • From this, the variance can be calculated using Steiner's theorem:
σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
  • In the special case  M=5  the result for the variance  σ2x=2_.


(3)  Because of the symmetry of  y,  it holds independently of  M:

my=0_.


(4)  The following relation holds between  x(t)  and  y(t):

y(t)=2y0M1[x(t)mx].
  • From this it follows for the variances:
σ2y=4y20(M1)2σ2x=y20(M21)3(M1)2=y20(M+1)3(M1).
  • In the special case  M=5  this results in:
σ2y=y20634=2V2_.