Difference between revisions of "Aufgaben:Exercise 2.2: Multi-Level Signals"

From LNTwww
 
(5 intermediate revisions by one other user not shown)
Line 4: Line 4:
  
  
[[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-stepped signals]]
+
[[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-level signals]]
 
Let the rectangular signal  $x(t)$  be dimensionless and can only have the current values  $0, \ 1, \ 2, \ \text{...} \ , \ M-2, \ M-1$  with equal probability. The upper graph shows this signal for the special case  $M = 5$.
 
Let the rectangular signal  $x(t)$  be dimensionless and can only have the current values  $0, \ 1, \ 2, \ \text{...} \ , \ M-2, \ M-1$  with equal probability. The upper graph shows this signal for the special case  $M = 5$.
  
  
The rectangular signal&nbsp; $y(t)$&nbsp; is also&nbsp; $M$&ndash;stepped, but zero mean and restricted to the range from&nbsp; $y > -y_0$&nbsp; to&nbsp; $y < +y_0$&nbsp; .  
+
The rectangular zero mean signal&nbsp; $y(t)$&nbsp; can also assume&nbsp; $M$&nbsp; different values.&nbsp;  
 
+
*It is restricted to the range from&nbsp; $ -y_0 \le y \le +y_0$.  
 
+
*In the graph below you can see the signal&nbsp; $y(t)$, again for the level number&nbsp; $M = 5$.  
In the graph below you can see the signal&nbsp; $y(t)$, again for the number of steps&nbsp; $M = 5$.  
 
 
 
 
 
 
 
  
  
Line 23: Line 19:
 
Hints:
 
Hints:
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]].
   
+
*Fur numerical calculations,&nbsp; use&nbsp; $y_0 = \rm 2\hspace{0.05cm}V$.  
**The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]]&nbsp; $\Rightarrow$ &nbsp; Calculating Moments for Discrete-Valued Random Variables  
+
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video<br> &nbsp; &nbsp; [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] &nbsp; &rArr; &nbsp; "Calculating Moments for Discrete-Valued Random Variables"
*Fur numerical calculations, use&nbsp; $y_0 = 2\hspace{0.05cm}V$.
+
 
  
  
Line 49: Line 45:
  
  
{What is the variance&nbsp; $\sigma_y^2$&nbsp; of the random variable&nbsp; $y$?&nbsp; Consider the result from&nbsp; '''(2)'''.&nbsp; What is the value again for&nbsp; $M= 5$?
+
{What is the variance&nbsp; $\sigma_y^2$&nbsp; of the random variable&nbsp; $y$&nbsp; in general and for&nbsp; $M= 5$?&nbsp; Consider the result from&nbsp; '''(2)'''.
 
|type="{}"}
 
|type="{}"}
 
$\sigma_y^2\ = \ $ { 2 3% } $\ \rm V^2$
 
$\sigma_y^2\ = \ $ { 2 3% } $\ \rm V^2$
Line 60: Line 56:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Man erh&auml;lt durch Mittelung über alle möglichen Signalwerte für den linearen Mittelwert:
 
:$$m_{\it x}=\rm \sum_{\mu=0}^{\it M-{\rm 1}} \it p_\mu\cdot x_{\mu}=\frac{\rm 1}{\it M} \cdot \sum_{\mu=\rm 0}^{\it M-\rm 1}\mu=\frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M}{\rm 2}=\frac{\it M-\rm 1}{\rm 2}.$$
 
 
*Im Sonderfall&nbsp; $M= 5$&nbsp; ergibt sich der lineare Mittelwert zu&nbsp; $m_x \;\underline{= 2}$.
 
 
 
 
'''(2)'''&nbsp; Analog gilt f&uuml;r den quadratischen Mittelwert:
 
:$$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\cdot \sum_{\mu=\rm 0}^{\rm M-1}\mu^{\rm 2} =  \frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M\cdot(\rm 2\it M-\rm 1)}{\rm 6} = \frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}.$$
 
 
*Im Sonderfall $M= 5$&nbsp; ergibt sich der quadratische Mittelwert zu&nbsp; $m_{2x} {=6}$.
 
*Daraus kann die Varianz mit dem Satz von Steiner berechnet werden:
 
:$$\sigma_x^{\rm 2}=m_{\rm 2\it x}-m_x^{\rm 2}=\frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}-\frac{(\it M-\rm 1)^{\rm 2}}{\rm 4}=\frac{\it M^{\rm 2}-\rm 1}{\rm 12}.$$
 
 
*Im Sonderfall&nbsp; $M= 5$&nbsp; ergibt sich für die Varianz&nbsp; $\sigma_x^2 \;\underline{= 2}$.
 
 
 
 
'''(3)'''&nbsp; Aufgrund der Symmetrie von&nbsp; $y$&nbsp; gilt unabh&auml;ngig von&nbsp; $M$:
 
:$$m_x \;\underline{= 2}.$$
 
 
 
 
'''(4)'''&nbsp; Zwischen&nbsp; $x(t)$&nbsp;  und&nbsp; $y(t)$&nbsp; gilt folgender Zusammenhang:
 
:$$y(t)=\frac{2\cdot  y_{\rm 0}}{M-\rm 1}\cdot \big[x(t)-m_x\big].$$
 
 
*Daraus folgt f&uuml;r die Varianzen:
 
:$$\sigma_y^{\rm 2}=\frac{4\cdot y_{\rm 0}^{\rm 2}}{( M - 1)^{\rm 2}}\cdot \sigma_x^{\rm 2}=\frac{y_{\rm 0}^{\rm 2}\cdot (M^{\rm 2}-1)}{3\cdot (M- 1)^{\rm 2}}=\frac{y_{\rm 0}^{\rm 2}\cdot ( M+ 1)}{ 3\cdot ( M- 1)}.$$
 
 
*Im Sonderfall&nbsp; $M= 5$&nbsp; ergibt sich hierfür:
 
:$$\it \sigma_y^{\rm 2}= \frac {\it y_{\rm 0}^{\rm 2} \cdot {\rm 6}}{\rm 3 \cdot 4}\hspace{0.15cm} \underline{=\rm2\,V^{2}}.$$
 
 
{{ML-Fuß}}
 
  
 
'''(1)'''&nbsp; One obtains by averaging over all possible signal values for the linear mean:
 
'''(1)'''&nbsp; One obtains by averaging over all possible signal values for the linear mean:
Line 101: Line 64:
  
  
'''(2)'''&nbsp; Analogously, for the root mean square:
+
'''(2)'''&nbsp; Analogously to&nbsp; '''(1)'''&nbsp; one obtains for the second moment&nbsp; (second order moment):
 
: $$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\cdot \sum_{\mu=\rm 0}^{\rm M- 1}\mu^{\rm 2} = \frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M\cdot(\rm 2\it M-\rm 1)}{\rm 6} = \frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}. $$
 
: $$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\cdot \sum_{\mu=\rm 0}^{\rm M- 1}\mu^{\rm 2} = \frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M\cdot(\rm 2\it M-\rm 1)}{\rm 6} = \frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}. $$
  
*In the special case $M= 5$&nbsp; the root mean square results in&nbsp; $m_{2x} {=6}$.  
+
*In the special case $M= 5$&nbsp; the second moment&nbsp; $m_{2x} {=6}$.  
 
*From this, the variance can be calculated using Steiner's theorem:
 
*From this, the variance can be calculated using Steiner's theorem:
 
:$$\sigma_x^{\rm 2}=m_{\rm 2\it x}-m_x^{\rm 2}=\frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}-\frac{(\it M-\rm 1)^{\rm 2}}{\rm 4}=\frac{\it M^{\rm 2}-\rm 1}{\rm 12}.$$
 
:$$\sigma_x^{\rm 2}=m_{\rm 2\it x}-m_x^{\rm 2}=\frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}-\frac{(\it M-\rm 1)^{\rm 2}}{\rm 4}=\frac{\it M^{\rm 2}-\rm 1}{\rm 12}.$$
Line 112: Line 75:
  
  
'''(3)'''&nbsp; Because of the symmetry of&nbsp; $y$&nbsp;, holds independently of&nbsp; $M$:  
+
'''(3)'''&nbsp; Because of the symmetry of&nbsp; $y$,&nbsp; it holds independently of&nbsp; $M$:  
:$$m_x \;\underline{= 2}.$$
+
:$$m_y \;\underline{= 0}.$$
 
 
  
  
'''(4)'''&nbsp; Between&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; the following relation holds:  
+
'''(4)'''&nbsp; The following relation holds between&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$:  
 
:$$y(t)=\frac{2\cdot y_{\rm 0}}{M-\rm 1}\cdot \big[x(t)-m_x\big].$$
 
:$$y(t)=\frac{2\cdot y_{\rm 0}}{M-\rm 1}\cdot \big[x(t)-m_x\big].$$
  

Latest revision as of 13:20, 18 January 2023


Two similar multi-level signals

Let the rectangular signal  $x(t)$  be dimensionless and can only have the current values  $0, \ 1, \ 2, \ \text{...} \ , \ M-2, \ M-1$  with equal probability. The upper graph shows this signal for the special case  $M = 5$.


The rectangular zero mean signal  $y(t)$  can also assume  $M$  different values. 

  • It is restricted to the range from  $ -y_0 \le y \le +y_0$.
  • In the graph below you can see the signal  $y(t)$, again for the level number  $M = 5$.




Hints:




Questions

1

What is the linear mean  $m_x$  of the random variable  $x$  for  $M= 5$?

$m_x \ = \ $

2

What is the variance  $\sigma_x^2$  of the random variable  $x$  in general and for  $M= 5$?

$\sigma_x^2\ = \ $

3

Calculate the mean  $m_y$  of the random variable  $y$  for  $M= 5$.

$m_y \ = \ $

$\ \rm V$

4

What is the variance  $\sigma_y^2$  of the random variable  $y$  in general and for  $M= 5$?  Consider the result from  (2).

$\sigma_y^2\ = \ $

$\ \rm V^2$


Solution

(1)  One obtains by averaging over all possible signal values for the linear mean:

$$m_{\it x}=\rm \sum_{\mu=0}^{\it M-{\rm 1}} \it p_\mu\cdot x_{\mu}=\frac{\rm 1}{\it M} \cdot \sum_{\mu=\rm 0}^{\it M-\rm 1}\mu=\frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M}{\rm 2}=\frac{\it M-\rm 1}{\rm 2}.$$
  • In the special case  $M= 5$  the linear mean results in  $m_x \;\underline{= 2}$.


(2)  Analogously to  (1)  one obtains for the second moment  (second order moment):

$$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\cdot \sum_{\mu=\rm 0}^{\rm M- 1}\mu^{\rm 2} = \frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M\cdot(\rm 2\it M-\rm 1)}{\rm 6} = \frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}. $$
  • In the special case $M= 5$  the second moment  $m_{2x} {=6}$.
  • From this, the variance can be calculated using Steiner's theorem:
$$\sigma_x^{\rm 2}=m_{\rm 2\it x}-m_x^{\rm 2}=\frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}-\frac{(\it M-\rm 1)^{\rm 2}}{\rm 4}=\frac{\it M^{\rm 2}-\rm 1}{\rm 12}.$$
  • In the special case  $M= 5$  the result for the variance  $\sigma_x^2 \;\underline{= 2}$.


(3)  Because of the symmetry of  $y$,  it holds independently of  $M$:

$$m_y \;\underline{= 0}.$$


(4)  The following relation holds between  $x(t)$  and  $y(t)$:

$$y(t)=\frac{2\cdot y_{\rm 0}}{M-\rm 1}\cdot \big[x(t)-m_x\big].$$
  • From this it follows for the variances:
$$\sigma_y^{\rm 2}=\frac{4\cdot y_{\rm 0}^{\rm 2}}{( M - 1)^{\rm 2}}\cdot \sigma_x^{\rm 2}=\frac{y_{\rm 0}^{\rm 2}\cdot (M^{\rm 2}- 1)}{3\cdot (M- 1)^{\rm 2}}=\frac{y_{\rm 0}^{\rm 2}\cdot ( M+ 1)}{ 3\cdot ( M- 1)}. $$
  • In the special case  $M= 5$  this results in:
$$\it \sigma_y^{\rm 2}= \frac {\it y_{\rm 0}^{\rm 2} \cdot {\rm 6}}{\rm 3 \cdot 4}\hspace{0.15cm} \underline{=\rm2\,V^{2}}.$$