Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.2: Multi-Level Signals"

From LNTwww
 
(4 intermediate revisions by one other user not shown)
Line 4: Line 4:
  
  
[[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-stepped signals]]
+
[[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-level signals]]
 
Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.
 
Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.
  
Line 45: Line 45:
  
  
{What is the variance  σ2y  of the random variable  y  in general and for  M=5??  Consider the result from  '''(2)'''.
+
{What is the variance  σ2y  of the random variable  y  in general and for  M=5?  Consider the result from  '''(2)'''.
 
|type="{}"}
 
|type="{}"}
 
σ2y =  { 2 3% }  V2
 
σ2y =  { 2 3% }  V2
Line 56: Line 56:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Man erhält durch Mittelung über alle möglichen Signalwerte für den linearen Mittelwert:
 
:mx=M1μ=0pμxμ=1MM1μ=0μ=1M(M1)M2=M12.
 
 
*Im Sonderfall  M=5  ergibt sich der lineare Mittelwert zu  mx=2_.
 
 
 
 
'''(2)'''  Analog gilt für den quadratischen Mittelwert:
 
:m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
 
 
*Im Sonderfall M=5  ergibt sich der quadratische Mittelwert zu  m2x=6.
 
*Daraus kann die Varianz mit dem Satz von Steiner berechnet werden:
 
:σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
 
 
*Im Sonderfall  M=5  ergibt sich für die Varianz  σ2x=2_.
 
 
 
 
'''(3)'''  Aufgrund der Symmetrie von  y  gilt unabhängig von  M:
 
:mx=2_.
 
 
 
 
'''(4)'''  Zwischen  x(t)   und  y(t)  gilt folgender Zusammenhang:
 
:y(t)=2y0M1[x(t)mx].
 
 
*Daraus folgt für die Varianzen:
 
:σ2y=4y20(M1)2σ2x=y20(M21)3(M1)2=y20(M+1)3(M1).
 
 
*Im Sonderfall  M=5  ergibt sich hierfür:
 
:σ2y=y20634=2V2_.
 
 
{{ML-Fuß}}
 
  
 
'''(1)'''  One obtains by averaging over all possible signal values for the linear mean:
 
'''(1)'''  One obtains by averaging over all possible signal values for the linear mean:
Line 97: Line 64:
  
  
'''(2)'''  Analogously, for the root mean square:
+
'''(2)'''  Analogously to  '''(1)'''  one obtains for the second moment  (second order moment):
 
: m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
 
: m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
  
*In the special case M=5  the root mean square results in  m2x=6.  
+
*In the special case M=5  the second moment  m2x=6.  
 
*From this, the variance can be calculated using Steiner's theorem:
 
*From this, the variance can be calculated using Steiner's theorem:
 
:σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
 
:σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
Line 108: Line 75:
  
  
'''(3)'''  Because of the symmetry of  y , holds independently of  M:  
+
'''(3)'''  Because of the symmetry of  y,  it holds independently of  M:  
:$$m_x \;\underline{= 2}.$$
+
:$$m_y \;\underline{= 0}.$$
 
 
  
  
'''(4)'''  Between  x(t)  and  y(t)  the following relation holds:  
+
'''(4)'''  The following relation holds between  x(t)  and  y(t):  
 
:y(t)=2y0M1[x(t)mx].
 
:y(t)=2y0M1[x(t)mx].
  

Latest revision as of 14:20, 18 January 2023


Two similar multi-level signals

Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.


The rectangular zero mean signal  y(t)  can also assume  M  different values. 

  • It is restricted to the range from  y0y+y0.
  • In the graph below you can see the signal  y(t), again for the level number  M=5.




Hints:




Questions

1

What is the linear mean  mx  of the random variable  x  for  M=5?

mx = 

2

What is the variance  σ2x  of the random variable  x  in general and for  M=5?

σ2x = 

3

Calculate the mean  my  of the random variable  y  for  M=5.

my = 

 V

4

What is the variance  σ2y  of the random variable  y  in general and for  M=5?  Consider the result from  (2).

σ2y = 

 V2


Solution

(1)  One obtains by averaging over all possible signal values for the linear mean:

mx=M1μ=0pμxμ=1MM1μ=0μ=1M(M1)M2=M12.
  • In the special case  M=5  the linear mean results in  mx=2_.


(2)  Analogously to  (1)  one obtains for the second moment  (second order moment):

m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
  • In the special case M=5  the second moment  m2x=6.
  • From this, the variance can be calculated using Steiner's theorem:
σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
  • In the special case  M=5  the result for the variance  σ2x=2_.


(3)  Because of the symmetry of  y,  it holds independently of  M:

my=0_.


(4)  The following relation holds between  x(t)  and  y(t):

y(t)=2y0M1[x(t)mx].
  • From this it follows for the variances:
σ2y=4y20(M1)2σ2x=y20(M21)3(M1)2=y20(M+1)3(M1).
  • In the special case  M=5  this results in:
σ2y=y20634=2V2_.