Difference between revisions of "Aufgaben:Exercise 2.5Z: Square Wave"

From LNTwww
m (Text replacement - "Signal_Representation/Fourierreihe" to "Signal_Representation/Fourier_Series")
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Series
 
}}
 
}}
  
[[File:P_ID323__Sig_Z_2_5.png|right|frame|Verschiedene Rechtecksignale]]
+
[[File:P_ID323__Sig_Z_2_5.png|right|frame|Various square wave signals]]
Das mit der Zeit  $T_0$  periodische Signal  $x(t)$  wird durch den einzigen Parameter  $\Delta t$  beschrieben; die Amplitude der Rechteckimpulse sei jeweils  $1$. Da  $x(t)$  gerade ist, sind alle Sinuskoeffizienten  $B_n = 0$.
+
The signal  $x(t)$  periodic with time  $T_0$  is described by the single parameter  $\Delta t$; 
 +
let the amplitude of the square-wave pulses be  $1$ in each case.  Since  $x(t)$  is even, all sine coefficients  $B_n = 0$.
  
Der Gleichsignalkoeffizient ist  $A_0 = \Delta t/T_0$  und für die Cosinuskoeffizienten gilt:
+
The DC signal coefficient is  $A_0 = \Delta t/T_0$  and the following applies to the cosine coefficients:
 
:$$A_n=\frac{2}{n\pi}\cdot \sin(n\pi \Delta t/T_0).$$
 
:$$A_n=\frac{2}{n\pi}\cdot \sin(n\pi \Delta t/T_0).$$
In den Teilaufgaben  '''(1)'''  und  '''(2)'''  wird das Signal  $x(t)$  für die zwei Parameterwerte  $\Delta t/T_0 = 0.5$  bzw.  $\Delta t/T_0 = 0.25$  analysiert.  
+
In subtasks  '''(1)'''  and  '''(2)'''  the signal  $x(t)$  is analyzed for the two parameter values  $\Delta t/T_0 = 0.5$  and  $\Delta t/T_0 = 0.25$  respectively.  
  
Danach betrachten wir die beiden ebenfalls in der Abbildung dargestellten Signale  $y(t)$  und  $z(t)$, jeweils mit  $\Delta t/T_0 = 0.25$. Zwischen diesen Signalen und  $x(t)$  besteht ein fester Zusammenhang, der zur Berechnung ausgenutzt werden kann.
+
Then we consider the two signals  $y(t)$  and  $z(t)$, each with  $\Delta t/T_0 = 0.25$. There is a fixed relationship between these signals and  $x(t)$  which can be exploited for the calculation.
  
  
Line 18: Line 19:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/Fourier_Series|Fourierreihe]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourier Series]].
*Eine kompakte Zusammenfassung der Thematik finden Sie in den beiden Lernvideos
+
*You can find a compact summary of the topic in the two learning videos
::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]],
+
:[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]]  ⇒   "To calculate the Fourier coefficients",
:: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]].
+
: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]   ⇒    "Properties of the Fourier series representation".
 
   
 
   
  
Line 28: Line 29:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für das Signal&nbsp; $x(t)$&nbsp; mit&nbsp; $\Delta t/T_0 = 0.5$?
+
{Which statements are true for the signal&nbsp; $x(t)$&nbsp; with&nbsp; $\Delta t/T_0 = 0.5$?
 
|type="[]"}
 
|type="[]"}
+ Die Spektralfunktion&nbsp; ${X(f)}$&nbsp; beinhaltet eine Diracfunktion bei&nbsp; $f = 0$&nbsp; mit dem Gewicht&nbsp; $0.5$.
+
+ The spectral function&nbsp; ${X(f)}$&nbsp; contains a Dirac delta function at&nbsp; $f = 0$&nbsp; with the weight&nbsp; $0.5$.
- Die Spektralfunktion&nbsp; ${X(f)}$&nbsp; beinhaltet Diraclinien bei allen Vielfachen der Grundfrequenz&nbsp; $f_0 = 1/T_0$.
+
- The spectral function&nbsp; ${X(f)}$&nbsp; contains Dirac delta lines at all multiples of the base frequency&nbsp; $f_0 = 1/T_0$.
+ Die Spektralfunktion&nbsp; ${X(f)}$&nbsp; beinhaltet Diraclinien bei ungeradzahligen Vielfachen der Grundfrequenz&nbsp; $f_0$.
+
+ The spectral function&nbsp; ${X(f)}$&nbsp; contains Dirac delta lines at odd multiples of the base frequency &nbsp; $f_0$.
- Die Spektrallinie bei&nbsp; $f_0$&nbsp; hat das Gewicht&nbsp; $2/\pi = 0.636$.
+
- The spectral line at&nbsp; $f_0$&nbsp; has the weight&nbsp; $2/\pi = 0.636$.
+ Die Spektrallinie bei&nbsp; $–\hspace{-0.1cm}f_0$&nbsp; hat das Gewicht&nbsp; $1/\pi = 0.318$.
+
+ The spectral line at&nbsp; $–\hspace{-0.1cm}f_0$&nbsp; has the weight&nbsp; $1/\pi = 0.318$.
  
  
{Welche Aussagen gelten für das Signal&nbsp; $x(t)$&nbsp; mit&nbsp; $\Delta t/T_0 = 0.25$?
+
{Which statements are true for the signal&nbsp; $x(t)$&nbsp; with&nbsp; $\Delta t/T_0 = 0.25$?
 
|type="[]"}
 
|type="[]"}
+ Die Spektralfunktion&nbsp; ${X(f)}$&nbsp; beinhaltet Diraclinien bei allen ungeraden Vielfachen der Grundfrequenz&nbsp; $f_0$.
+
+ The spectral function&nbsp; ${X(f)}$&nbsp; contains Dirac delta lines at all odd multiples of the base frequency&nbsp; $f_0$.
+ ${X(f)}$&nbsp; hat Diraclinien bei&nbsp; $\pm2f_0$,&nbsp; $\pm6f_0$,&nbsp; $\pm10f_0$, usw.
+
+ ${X(f)}$&nbsp; has Dirac delta lines at&nbsp; $\pm2f_0$,&nbsp; $\pm6f_0$,&nbsp; $\pm10f_0$, etc.
- ${X(f)}$&nbsp; hat Diraclinien bei&nbsp; $\pm4f_0$,&nbsp; $\pm8f_0$,&nbsp; $\pm12f_0$, usw.
+
- ${X(f)}$&nbsp; has Dirac delta lines at&nbsp; $\pm4f_0$,&nbsp; $\pm8f_0$,&nbsp; $\pm12f_0$, etc.
+ Die Spektrallinie bei&nbsp; $2f_0$&nbsp; hat das Gewicht&nbsp; $1/(2\pi) = 0.159$.
+
+ The Dirac delta line at&nbsp; $2f_0$&nbsp; has the weight&nbsp; $1/(2\pi) = 0.159$.
  
  
{Wie groß ist der Gleichanteil des Signals&nbsp; ${y(t)}$?
+
{What is the DC coefficient of the signal&nbsp; ${y(t)}$?
 
|type="{}"}
 
|type="{}"}
 
$y(t)$: &nbsp; $A_0 \ = \ $ { 0.75 3% }
 
$y(t)$: &nbsp; $A_0 \ = \ $ { 0.75 3% }
  
  
{Welcher Zusammenhang besteht zwischen den Signalen&nbsp; $x(t)$&nbsp; und&nbsp; ${y(t)}$? Geben Sie mit Hilfe dieser Überlegungen die Fourierkoeffizienten von&nbsp; ${y(t)}$ an. <br>Wie groß sind die Koeffizienten&nbsp; $A_1$&nbsp; und&nbsp; $A_2$&nbsp; dieses Signals?
+
{What is the relationship between the signals&nbsp; $x(t)$&nbsp; and&nbsp; ${y(t)}$?&nbsp; With the help of these considerations, give the Fourier coefficients of&nbsp; ${y(t)}$. <br>What are the coefficients&nbsp; $A_1$&nbsp; and&nbsp; $A_2$&nbsp; of this signal?
 
|type="{}"}
 
|type="{}"}
 
$y(t)$: &nbsp; $A_1\ = \ $ { -0.46--0.44 }
 
$y(t)$: &nbsp; $A_1\ = \ $ { -0.46--0.44 }
Line 59: Line 60:
  
  
{Welcher Zusammenhang besteht zwischen den Signalen&nbsp; ${y(t)}$&nbsp; und&nbsp; ${z(t)}$? Wie groß sind die Koeffizienten&nbsp; $A_1$&nbsp; und&nbsp; $A_2$&nbsp; des Signals&nbsp; ${z(t)}$? <br>Überprüfen Sie das Ergebnis anhand der angebenen Koeffizienten des Signals&nbsp; $x(t)$.
+
{What is the relationship between the signals&nbsp; ${y(t)}$&nbsp; and&nbsp; ${z(t)}$?&nbsp; What are the coefficients&nbsp; $A_1$&nbsp; and&nbsp; $A_2$&nbsp; of the signal&nbsp; ${z(t)}$? <br>Check the result using the given coefficients of the signal&nbsp; $x(t)$.
 
|type="{}"}
 
|type="{}"}
 
$z(t)$: &nbsp; $A_1 \ = \ $ { 0.45 3% }
 
$z(t)$: &nbsp; $A_1 \ = \ $ { 0.45 3% }
Line 68: Line 69:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Aussagen 1, 3 und 5</u>:
+
'''(1)'''&nbsp; <u>Statements 1, 3 and 5</u> are correct:
*Die Spektralfunktion beinhaltet eine Diracfunktion bei $f = 0$ mit dem Gewicht $0.5$ (Gleichanteil) sowie weitere Spektrallinien bei ungeradzahligen Vielfachen ($n = \pm1, \pm3, \pm5,\text{...}$) von $f_0$.  
+
*The spectral function contains a Dirac delta line at&nbsp; $f = 0$&nbsp; with weight&nbsp; $0.5$&nbsp; (DC component)&nbsp; as well as further spectral lines at odd multiples&nbsp; ($n = \pm1, \pm3, \pm5,\text{...}$ of $f_0$.
*Die Gewichte bei $\pm f_0$ sind jeweils $A_1/2 = 1/\pi = 0.318$.  
+
*The weights at&nbsp; $\pm f_0$ are $A_1/2 = 1/\pi = 0.318$&nbsp; in each case.  
  
  
'''(2)'''&nbsp;  Richtig sind die <u>Aussagen 1, 2 und 4</u>:
+
'''(2)'''&nbsp;  <u>Statements 1, 2 and 4</u> are correct:
*Bei allen ungeradzahligen Vielfachen der Grundfrequenz existieren Spektrallinien, zusätzlich noch bei den $2–{\rm fachen}$, $6–{\rm fachen}$ und $10–{\rm fachen}$.  
+
*Spectral lines exist at all odd multiples of the basic frequency, and additionally at the&nbsp; $2–{\rm fold}$,&nbsp; $6–{\rm fold}$&nbsp; and&nbsp; $10–{\rm fold}$.  
*Beispielsweise gilt $A_1 = 1/\pi = 0.450$. Die Spektrallinie bei $2f_0$ hat somit das Gewicht $A_2/2 = 1/(2\pi) = 0.159$.   
+
*For example&nbsp; $A_1 = 1/\pi = 0.450$.&nbsp; The Dirac delta line at&nbsp; $2f_0$&nbsp; thus has the weight&nbsp; $A_2/2 = 1/(2\pi) = 0.159$.   
*Für $n = 4$, $n = 8$, usw. sind dagegen die Koeffizienten $A_n = 0$, da für die Sinusfunktion gilt: &nbsp; $\sin(\pi) = \sin(2\pi) =\text{ ...} = 0$.  
+
*For&nbsp; $n = 4$,&nbsp; $n = 8$, etc., on the other hand, the coefficients&nbsp; $A_n = 0$, since the following holds for the sine function: &nbsp; $\sin(\pi) = \sin(2\pi) =\text{ ...} = 0$.  
  
  
'''(3)'''&nbsp;  Aus der grafischen Darstellung des Signals ${y(t)}$ wird deutlich, dass $A_0 = 0.75$ gelten muss. Zum gleichen Ergebnis kommt man über die Beziehung:
+
'''(3)'''&nbsp;  From the graphical representation of the signal&nbsp; ${y(t)}$&nbsp; it is clear that&nbsp; $A_0 = 0.75$&nbsp; must apply.&nbsp; The same result can be obtained using the relationship:
 
:$$A_0^{(y)}=1-A_0^{(x)}=1-0.25\hspace{0.15cm}\underline{=0.75}.$$
 
:$$A_0^{(y)}=1-A_0^{(x)}=1-0.25\hspace{0.15cm}\underline{=0.75}.$$
  
  
'''(4)'''&nbsp;  Es gilt ${y(t)} = 1 - x(t)$. Für $n \neq 0$ ergeben sich somit die gleichen Fourierkoeffizienten wie für das Signal $x(t)$, jedoch mit negativen Vorzeichen. Inbesondere gilt:
+
'''(4)'''&nbsp;  The following applies:&nbsp; ${y(t)} = 1 - x(t)$.&nbsp; For&nbsp; $n \neq 0$&nbsp; the Fourier coefficients are the same as for the signal&nbsp; $x(t)$, but with negative signs.&nbsp; In particular:
 
:$$A_1^{(y)} = -A_1^{(x)}=-{2}/{\pi} \cdot \sin({\pi}/{4})= -{\sqrt2}/{\pi}\hspace{0.15cm}\underline{\approx -0.450},$$
 
:$$A_1^{(y)} = -A_1^{(x)}=-{2}/{\pi} \cdot \sin({\pi}/{4})= -{\sqrt2}/{\pi}\hspace{0.15cm}\underline{\approx -0.450},$$
 
:$$A_2^{(y)} = -A_2^{(x)}=-{1}/{\pi}\hspace{0.15cm}\underline{ \approx - 0.318}.$$
 
:$$A_2^{(y)} = -A_2^{(x)}=-{1}/{\pi}\hspace{0.15cm}\underline{ \approx - 0.318}.$$
  
  
'''(5)'''&nbsp;  Es gilt ${z(t)} = y(t - T_0/2)$. Mit der Fourierreihendarstellung von ${y(t)}$ folgt daraus:
+
'''(5)'''&nbsp;  ${z(t)} = y(t - T_0/2)$ applies.&nbsp; With the Fourier series representation of&nbsp; ${y(t)}$&nbsp; it follows:
 
:$$z(t)=A_0+A_1^{(y)}\cos(\omega_0(t-\frac{T_0}{2}))+A_2^{(y)}\cos(2\omega_0(t-\frac{T_0}{2}))+A_3^{(y)}\cos(3\omega_0(t-\frac{T_0}{2}))+\ldots$$
 
:$$z(t)=A_0+A_1^{(y)}\cos(\omega_0(t-\frac{T_0}{2}))+A_2^{(y)}\cos(2\omega_0(t-\frac{T_0}{2}))+A_3^{(y)}\cos(3\omega_0(t-\frac{T_0}{2}))+\ldots$$
 
:$$\Rightarrow \quad z(t)=A_0-A_1^{(y)}\cos(\omega_0 t)+A_2^{(y)}\cos(2\omega_0 t)-A_3^{(y)}\cos(3\omega_0 t)+\text{...}$$
 
:$$\Rightarrow \quad z(t)=A_0-A_1^{(y)}\cos(\omega_0 t)+A_2^{(y)}\cos(2\omega_0 t)-A_3^{(y)}\cos(3\omega_0 t)+\text{...}$$
Damit erhält man:
+
Thus one obtains:
 
:$$A_1^{(z)}=-A_1^{(y)}={\sqrt2}/{\pi}\hspace{0.15cm}\underline{=+0.450}, \hspace {0.5cm} A_2^{(z)}=A_2^{(y)}=-{1}/{\pi}\hspace{0.15cm}\underline{=-0.318}.$$
 
:$$A_1^{(z)}=-A_1^{(y)}={\sqrt2}/{\pi}\hspace{0.15cm}\underline{=+0.450}, \hspace {0.5cm} A_2^{(z)}=A_2^{(y)}=-{1}/{\pi}\hspace{0.15cm}\underline{=-0.318}.$$
Das gleiche Ergebnis erhält man ausgehend von den gegebenen Koeffizienten mit $\Delta t/T_0 = 0.75$:
+
The same result is obtained starting from the given coefficients with&nbsp; $\Delta t/T_0 = 0.75$:
 
:$$A_1^{(z)}={2}/{\pi} \cdot \sin({3}/{4}\cdot \pi)={\sqrt2}/{\pi},  
 
:$$A_1^{(z)}={2}/{\pi} \cdot \sin({3}/{4}\cdot \pi)={\sqrt2}/{\pi},  
 
\hspace {0.5cm}A_2^{(z)}=
 
\hspace {0.5cm}A_2^{(z)}=
Line 104: Line 105:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 13:30, 18 January 2023

Various square wave signals

The signal  $x(t)$  periodic with time  $T_0$  is described by the single parameter  $\Delta t$;  let the amplitude of the square-wave pulses be  $1$ in each case.  Since  $x(t)$  is even, all sine coefficients  $B_n = 0$.

The DC signal coefficient is  $A_0 = \Delta t/T_0$  and the following applies to the cosine coefficients:

$$A_n=\frac{2}{n\pi}\cdot \sin(n\pi \Delta t/T_0).$$

In subtasks  (1)  and  (2)  the signal  $x(t)$  is analyzed for the two parameter values  $\Delta t/T_0 = 0.5$  and  $\Delta t/T_0 = 0.25$  respectively.

Then we consider the two signals  $y(t)$  and  $z(t)$, each with  $\Delta t/T_0 = 0.25$. There is a fixed relationship between these signals and  $x(t)$  which can be exploited for the calculation.




Hints:

  • This exercise belongs to the chapter  Fourier Series.
  • You can find a compact summary of the topic in the two learning videos
Zur Berechnung der Fourierkoeffizienten  ⇒   "To calculate the Fourier coefficients",
Eigenschaften der Fourierreihendarstellung   ⇒   "Properties of the Fourier series representation".



Questions

1

Which statements are true for the signal  $x(t)$  with  $\Delta t/T_0 = 0.5$?

The spectral function  ${X(f)}$  contains a Dirac delta function at  $f = 0$  with the weight  $0.5$.
The spectral function  ${X(f)}$  contains Dirac delta lines at all multiples of the base frequency  $f_0 = 1/T_0$.
The spectral function  ${X(f)}$  contains Dirac delta lines at odd multiples of the base frequency   $f_0$.
The spectral line at  $f_0$  has the weight  $2/\pi = 0.636$.
The spectral line at  $–\hspace{-0.1cm}f_0$  has the weight  $1/\pi = 0.318$.

2

Which statements are true for the signal  $x(t)$  with  $\Delta t/T_0 = 0.25$?

The spectral function  ${X(f)}$  contains Dirac delta lines at all odd multiples of the base frequency  $f_0$.
${X(f)}$  has Dirac delta lines at  $\pm2f_0$,  $\pm6f_0$,  $\pm10f_0$, etc.
${X(f)}$  has Dirac delta lines at  $\pm4f_0$,  $\pm8f_0$,  $\pm12f_0$, etc.
The Dirac delta line at  $2f_0$  has the weight  $1/(2\pi) = 0.159$.

3

What is the DC coefficient of the signal  ${y(t)}$?

$y(t)$:   $A_0 \ = \ $

4

What is the relationship between the signals  $x(t)$  and  ${y(t)}$?  With the help of these considerations, give the Fourier coefficients of  ${y(t)}$.
What are the coefficients  $A_1$  and  $A_2$  of this signal?

$y(t)$:   $A_1\ = \ $

$\hspace{1cm}A_2 \ = \ $

5

What is the relationship between the signals  ${y(t)}$  and  ${z(t)}$?  What are the coefficients  $A_1$  and  $A_2$  of the signal  ${z(t)}$?
Check the result using the given coefficients of the signal  $x(t)$.

$z(t)$:   $A_1 \ = \ $

$\hspace{1cm}A_2 \ = \ $


Solution

(1)  Statements 1, 3 and 5 are correct:

  • The spectral function contains a Dirac delta line at  $f = 0$  with weight  $0.5$  (DC component)  as well as further spectral lines at odd multiples  ($n = \pm1, \pm3, \pm5,\text{...}$ of $f_0$.
  • The weights at  $\pm f_0$ are $A_1/2 = 1/\pi = 0.318$  in each case.


(2)  Statements 1, 2 and 4 are correct:

  • Spectral lines exist at all odd multiples of the basic frequency, and additionally at the  $2–{\rm fold}$,  $6–{\rm fold}$  and  $10–{\rm fold}$.
  • For example  $A_1 = 1/\pi = 0.450$.  The Dirac delta line at  $2f_0$  thus has the weight  $A_2/2 = 1/(2\pi) = 0.159$.
  • For  $n = 4$,  $n = 8$, etc., on the other hand, the coefficients  $A_n = 0$, since the following holds for the sine function:   $\sin(\pi) = \sin(2\pi) =\text{ ...} = 0$.


(3)  From the graphical representation of the signal  ${y(t)}$  it is clear that  $A_0 = 0.75$  must apply.  The same result can be obtained using the relationship:

$$A_0^{(y)}=1-A_0^{(x)}=1-0.25\hspace{0.15cm}\underline{=0.75}.$$


(4)  The following applies:  ${y(t)} = 1 - x(t)$.  For  $n \neq 0$  the Fourier coefficients are the same as for the signal  $x(t)$, but with negative signs.  In particular:

$$A_1^{(y)} = -A_1^{(x)}=-{2}/{\pi} \cdot \sin({\pi}/{4})= -{\sqrt2}/{\pi}\hspace{0.15cm}\underline{\approx -0.450},$$
$$A_2^{(y)} = -A_2^{(x)}=-{1}/{\pi}\hspace{0.15cm}\underline{ \approx - 0.318}.$$


(5)  ${z(t)} = y(t - T_0/2)$ applies.  With the Fourier series representation of  ${y(t)}$  it follows:

$$z(t)=A_0+A_1^{(y)}\cos(\omega_0(t-\frac{T_0}{2}))+A_2^{(y)}\cos(2\omega_0(t-\frac{T_0}{2}))+A_3^{(y)}\cos(3\omega_0(t-\frac{T_0}{2}))+\ldots$$
$$\Rightarrow \quad z(t)=A_0-A_1^{(y)}\cos(\omega_0 t)+A_2^{(y)}\cos(2\omega_0 t)-A_3^{(y)}\cos(3\omega_0 t)+\text{...}$$

Thus one obtains:

$$A_1^{(z)}=-A_1^{(y)}={\sqrt2}/{\pi}\hspace{0.15cm}\underline{=+0.450}, \hspace {0.5cm} A_2^{(z)}=A_2^{(y)}=-{1}/{\pi}\hspace{0.15cm}\underline{=-0.318}.$$

The same result is obtained starting from the given coefficients with  $\Delta t/T_0 = 0.75$:

$$A_1^{(z)}={2}/{\pi} \cdot \sin({3}/{4}\cdot \pi)={\sqrt2}/{\pi}, \hspace {0.5cm}A_2^{(z)}= {1}/{\pi} \cdot \sin({3}/{2} \cdot \pi) =-{1}/{\pi}.$$