Difference between revisions of "Aufgaben:Exercise 2.2: Modulation Depth"

From LNTwww
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/ Zweiseitenband-Amplitudenmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Double-Sideband_Amplitude_Modulation
 
}}
 
}}
  
[[File:P_ID989__Mod_A_2_2.png|right|]]
+
[[File:P_ID989__Mod_A_2_2.png|right|frame|Definition of modulation depth for DSB–AM]]
Die Grafik zeigt ZSB–amplitudenmodulierte Signale $s_1(t)$ bis $s_4(t)$ mit unterschiedlichem Modulationsgrad. Das Nachrichtensignal $q(t)$ und das Trägersignal $z(t)$ seien jeweils cosinusförmig:
+
The graph shows  "DSB amplitude-modulated signals"   $s_1(t)$  to  $s_4(t)$  with differing modulation depth  $m$.  Let the message signal  $q(t)$  and the carrier signal  $z(t)$  each be cosine:
$$q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} f_{\rm N} = 4\,{\rm kHz}\hspace{0.05cm},$$
+
:$$q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} f_{\rm N} = 4\,{\rm kHz}\hspace{0.05cm},$$
$$ z(t) = \hspace{0.2cm}1 \hspace{0.15cm} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} f_{\rm T} = 50\,{\rm kHz}\hspace{0.05cm}.$$
+
:$$ z(t) = \hspace{0.2cm}1 \hspace{0.15cm} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} f_{\rm T} = 50\,{\rm kHz}\hspace{0.05cm}.$$
Das modulierte Signal (Sendesignal) lautet somit mit dem im Modulator zugesetzten Gleichanteil $A_T$:
+
The modulated signal  (transmitted signal)  with the DC component added in the modulator is  $A_{\rm T}$:
$$s(t ) = A(t) \cdot z(t), \hspace{0.2cm} A(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$
+
:$$s(t ) = A(t) \cdot z(t), \hspace{0.2cm} A(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$
Ist der Modulationsgrad m ≤ 1, so ist A(t) gleich der Hüllkurve a(t). Dagegen gilt für m > 1:
+
In the graphs,  the chosen normalization was:
$$A_{\rm T}+ A_{\rm N} = 2\,{\rm V}\hspace{0.05cm}.$$
+
:$$A_{\rm T}+ A_{\rm N} = 2\,{\rm V}\hspace{0.05cm}.$$
Der cosinusförmige Verlauf $A(t)$ schwankt zwischen $A_{max}$ und $A_{min}$, wobei wegen der obigen Normierung stets $A_{max} = 2V$ ist. Die Minimalwerte von $A(t)$ treten zum Beispiel bei der halben Periodendauer des Quellensignals (also für $t = 125 μs$) auf:
+
*If the modulation depth is  $m ≤ 1$,  then  $A(t)= q(t) + A_{\rm T}$   is equal to the envelope  $a(t)$.
$$A_{\rm min} = q(T_0/2)+ A_{\rm T} = A_{\rm T}-A_{\rm N}.$$
+
*In contrast,  for a modulation depth  $m > 1$:
Die Zahlenwerte sind in der Grafik angegeben.
+
:$$a(t ) = |A(t)|\hspace{0.05cm}.$$
 +
*The cosine curve  $A(t)$  varies between  $A_{\rm max}$  and  $A_{\rm min}$; because of normalization,   ⇒   $A_{\rm max} = 2 \ \rm  V$.  
 +
*The minimum values of  $A(t)$  occur at half the period of the source signal  $($i.e., for  $t = 125 \ \rm µ s)$:
 +
:$$A_{\rm min} = q(T_0/2)+ A_{\rm T} = A_{\rm T}-A_{\rm N}.$$
 +
*The numerical values are given in the graph.
  
'''Hinweis:'''Die Aufgabe bezieht sich auf den Theoriteil von [http://en.lntwww.de/Modulationsverfahren/Zweiseitenband-Amplitudenmodulation Kapitel 2.1].
 
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter   [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
 +
*Particular reference is made to the page   [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Double-Sideband_Amplitude_Modulation_with_carrier|DSB-AM with carrier]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Bestimmen Sie für die Signale $s_1(t)$, $s_2(t)$, $s_3(t)$ jeweils den Modulationsgrad.
+
{Determine the modulation depth for each of the signals &nbsp;$s_1(t)$, &nbsp;$s_2(t)$, &nbsp;$s_3(t)$.
 
|type="{}"}
 
|type="{}"}
$m_1$ = { 0.5 3% }
+
$m_1 \ = \ $ { 0.5 3% }
$m_2$ = { 1 3% }  
+
$m_2 \ = \ $ { 1 3% }  
$m_3$ = { 3 3% }  
+
$m_3 \ = \ $ { 3 3% }  
  
{Welche Aussagen treffen für das Signal $s_4(t)$ zu?
+
{Which statements are true for the signal &nbsp;$s_4(t)$?
 
|type="[]"}
 
|type="[]"}
+ Es handelt sich um „ZSB–AM ohne Träger”.
+
+ This is a case of&nbsp; "DSB–AM without carrier".
- Der Modulationsgrad ist $m = 0$.
+
- The modulation depth is &nbsp;$m = 0$.
+ Der Modulationsgrad ist unendlich groß.
+
+ The modulation depth &nbsp;$m$&nbsp; is infinite.
  
 
 
{Es gelte nun $A_T = A_N = 1 V$, also $m = 1$. Wie lautet das Spektrum $S_+(f)$ des analytischen Signals? Welche Diracgewichte treten bei $f_T$ sowie bei $f_T$ $± f_N$ auf?
+
{Let &nbsp;$A_{\rm T} = A_{\rm N} = 1\ \rm V$ &nbsp; &rArr; &nbsp; $m = 1$.&nbsp; What is the spectrum &nbsp;$S_+(f)$&nbsp; of the analytical signal?&nbsp; Which Dirac weights occur at &nbsp;$f_{\rm T}$&nbsp; as well as at &nbsp;$f_{\rm T}± f_{\rm N}$?
 
|type="{}"}
 
|type="{}"}
$S_+(f_T)$ = { 1 3% } $\text{V}$  
+
$S_+(f_{\rm T}) \ = \ $ { 1 3% } $\ \text{V}$  
$S_+(f_T ± f_N)$ = { 0.5 3% }  $\text{V}$  
+
$S_+(f_{\rm T} ± f_{\rm N}) \ = \ $ { 0.5 3% }  $\ \text{V}$  
  
{Welcher Anteil $P_T/P_S$ der gesamten Sendeleistung $P_S$ geht allein auf den Träger zurück, der nicht zur Demodulation genutzt werden kann?
+
{Now let &nbsp;$m = 1$.&nbsp; Which fraction &nbsp;$P_{\rm T}/P_{\rm S}$&nbsp; of the total transmission power &nbsp;$P_{\rm S}$&nbsp; is due to the carrier alone,&nbsp; and thus cannot be used for demodulation??
 
|type="{}"}
 
|type="{}"}
$m = 1: P_T/P_S$ = { 0.667 3% }  
+
$P_{\rm T}/P_{\rm S}  \ = \ $ { 0.667 3% }  
  
{Verallgemeinern Sie das Ergebnis aus d) für einen beliebigen Modulationsgrad. Welche Leistungsverhältnisse ergeben sich für $m = 0.5$, $m = 3$ und $m → ∞$ ?
+
{Generalize the result from &nbsp; '''(4)'''&nbsp; for an arbitrary modulation depth&nbsp; $m$.&nbsp; What are the power ratios for  &nbsp;$m = 0.5$, &nbsp;$m = 3$&nbsp; and &nbsp;$m → ∞$?
 
|type="{}"}
 
|type="{}"}
$m = 0.5 : P_T/P_S$ = { 0.182 3% }  
+
$m = 0.5\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S}  \ = \ $ { 0.889 3% }  
$m = 3.0 : P_T/P_S$ = { 0 3% }
+
$m = 3.0\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $ { 0.182 3% }
$m → ∞ : P_T/P_S$ = { 0 3% }  
+
$m → ∞ \text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \  $ { 0. }  
  
{Welche der nachfolgenden Bewertungen erscheinen Ihnen nach den bisherigen Berechnungen als sinnvoll?
+
{Based on the calculations so far,&nbsp; which of the following statements seem reasonable to you?
 
|type="[]"}
 
|type="[]"}
+ m ≈ 1 ist aus energetischen Gründen günstiger als ein kleines m.
+
+ $m ≈ 1$&nbsp; is more favorable than a small&nbsp; $m$&nbsp; for energy reasons.
+ Nur bei Hüllkurvendemodulation ist der Träger sinnvoll.
+
+ The carrier is only useful for envelope demodulation.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; From the two equations
'''2.'''
+
:$$ A_{\rm max} = A_{\rm T}+A_{\rm N}=2\,\,{\rm V},\hspace{0.3cm} A_{\rm min} = A_{\rm T}-A_{\rm N}\hspace{0.05cm}$$
'''3.'''
+
directly follows:
'''4.'''
+
:$$A_{\rm N}  =  (A_{\rm max} - A_{\rm min})/2,\hspace{0.3cm}
'''5.'''
+
A_{\rm T}  = (A_{\rm max} + A_{\rm min})/2\hspace{0.05cm}.$$
'''6.'''
+
*Thus,&nbsp; the modulation depth is
'''7.'''
+
:$$m = \frac{A_{\rm max} - A_{\rm min}}{A_{\rm max} + A_{\rm min}}\hspace{0.05cm}.$$
 +
*With the given numerical values,&nbsp; one obtains:
 +
:$$ m_1  =  \frac{2\,{\rm V} - 0.667\,{\rm V}}{2\,{\rm V} + 0.667\,{\rm V}} \hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}, \hspace{0.5cm} m_2 = \frac{2\,{\rm V} - 0\,{\rm V}}{2\,{\rm V} + 0\,{\rm V}} \hspace{0.15cm}\underline {= 1.0}\hspace{0.05cm}, \hspace{0.5cm}
 +
m_3 = \frac{2\,{\rm V} -(-1\,{\rm V})}{2\,{\rm V} + (-1\,{\rm V})} \hspace{0.15cm}\underline{=3.0}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>Answers 1 and 3</u>&nbsp; are correct:
 +
*In this case,&nbsp; $A_{\rm T} = 0$,&nbsp; which means it is indeed&nbsp; "DSB-AM without carrier".
 +
*The modulation depth&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; is infinitely large.
 +
 
 +
 
 +
 
 +
[[File:P_ID990__Mod_A_2_2_c.png|right|frame|Analytical signal's spectrum ]]
 +
'''(3)'''&nbsp; The spectrum&nbsp; $S_+(f)$&nbsp; is composed of three Dirac delta lines for each modulation depth &nbsp; $m$&nbsp; with the following weights:
 +
*$A_{\rm T}$&nbsp; $($at&nbsp; $f = f_{\rm T})$,
 +
* $m/2 · A_{\rm T}$&nbsp; $($at&nbsp; $f = f_{\rm T} ± f_{\rm N})$.
 +
 
 +
 
 +
For&nbsp; $m = 1$,&nbsp;  the weights are obtained according to the graph:
 +
*$S_+(f_{\rm T}) = 1\ \rm V$,
 +
*$S_+(f_{\rm T} ± f_{\rm T}) = 0.5\ \rm V$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The power (mean square) of a harmonic oscillation with amplitude &nbsp; $A_{\rm T} = 1 \ \rm V$&nbsp; referenced to the &nbsp; $1 \ Ω$&nbsp; resistor is:
 +
:$$P_{\rm T} ={A_{\rm T}^2}/{2} = 0.5\,{\rm V}^2 \hspace{0.05cm}.$$
 +
*In the same way,&nbsp; for the powers of the lower and the upper sideband we obtain:
 +
:$$P_{\rm LSB} = P_{\rm USB} =({A_{\rm N}}/{2})^2/2 = 0.125\,{\rm V}^2 \hspace{0.05cm}.$$
 +
*Thus,&nbsp; for&nbsp; $m=1$,&nbsp; the ratio we are looking for is:
 +
:$${P_{\rm T}}/{P_{\rm S}}= \frac{P_{\rm T}}{P_{\rm USB} + P_{\rm T}+ P_{\rm OSB}}= \frac{0.5\,{\rm V}^2}{0.125\,{\rm V}^2 + 0.5\,{\rm V}^2+ 0.125\,{\rm V}^2}= 2/3\hspace{0.15cm}\underline { = 0.667}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Using the Dirac weights&nbsp; $m/2 · A_{\rm T}$&nbsp; of the two sidebands corresponding to subtask&nbsp; '''(3)''',&nbsp; we get:
 +
:$${P_{\rm T}}/{P_{\rm S}}= \frac{A_{\rm T}^2/2}{A_{\rm T}^2/2 + 2 \cdot (m/2)^2 \cdot A_{\rm T}^2/2}= \frac{2}{2 + m^2}\hspace{0.05cm}.$$
 +
*This leads to the numerical values &nbsp; $8/9 = 0.889$&nbsp; $($for&nbsp; $m = 0.5)$, &nbsp; &nbsp; $2/11 = 0.182$&nbsp; $($for&nbsp; $m = 3)$,  &nbsp; &nbsp; $0$&nbsp;  $($for&nbsp; $m \to ∞$).
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; <u>Both statements</u>&nbsp; are true:
 +
*The addition of the carrier only makes sense in order to use the simpler envelope demodulator.&nbsp;  This is only possible for&nbsp; $m \le 1$.
 +
*However,&nbsp; should the modulation depth be&nbsp; $m > 1$&nbsp; and the use of a synchronous demodulator therefore be required,&nbsp; the carrier should be (almost) completely omitted for energy reasons.
 +
*Similarly due to energy concerns,&nbsp; if an envelope demodulator is used,&nbsp; the largest possible modulation depth&nbsp; $m < 1$&nbsp;  &nbsp; &rArr;  &nbsp; $m \to 1$&nbsp; should be aimed for.
 +
*However,&nbsp; a small residual carrier can facilitate carrier recovery,&nbsp; which is needed in a synchronous demodulator for frequency and phase synchronization.&nbsp;  Thus,&nbsp; the second statement is only conditionally correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^2.1 Zweiseitenband-Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]]

Latest revision as of 15:17, 18 January 2023

Definition of modulation depth for DSB–AM

The graph shows  "DSB amplitude-modulated signals"   $s_1(t)$  to  $s_4(t)$  with differing modulation depth  $m$.  Let the message signal  $q(t)$  and the carrier signal  $z(t)$  each be cosine:

$$q(t) = A_{\rm N} \cdot \cos (2 \pi f_{\rm N} t),\hspace{0.2cm} f_{\rm N} = 4\,{\rm kHz}\hspace{0.05cm},$$
$$ z(t) = \hspace{0.2cm}1 \hspace{0.15cm} \cdot \cos (2 \pi f_{\rm T} t),\hspace{0.2cm} f_{\rm T} = 50\,{\rm kHz}\hspace{0.05cm}.$$

The modulated signal  (transmitted signal)  with the DC component added in the modulator is  $A_{\rm T}$:

$$s(t ) = A(t) \cdot z(t), \hspace{0.2cm} A(t) = q(t) + A_{\rm T}\hspace{0.05cm}.$$

In the graphs,  the chosen normalization was:

$$A_{\rm T}+ A_{\rm N} = 2\,{\rm V}\hspace{0.05cm}.$$
  • If the modulation depth is  $m ≤ 1$,  then  $A(t)= q(t) + A_{\rm T}$  is equal to the envelope  $a(t)$.
  • In contrast,  for a modulation depth  $m > 1$:
$$a(t ) = |A(t)|\hspace{0.05cm}.$$
  • The cosine curve  $A(t)$  varies between  $A_{\rm max}$  and  $A_{\rm min}$; because of normalization,   ⇒   $A_{\rm max} = 2 \ \rm V$.
  • The minimum values of  $A(t)$  occur at half the period of the source signal  $($i.e., for  $t = 125 \ \rm µ s)$:
$$A_{\rm min} = q(T_0/2)+ A_{\rm T} = A_{\rm T}-A_{\rm N}.$$
  • The numerical values are given in the graph.



Hints:


Questions

1

Determine the modulation depth for each of the signals  $s_1(t)$,  $s_2(t)$,  $s_3(t)$.

$m_1 \ = \ $

$m_2 \ = \ $

$m_3 \ = \ $

2

Which statements are true for the signal  $s_4(t)$?

This is a case of  "DSB–AM without carrier".
The modulation depth is  $m = 0$.
The modulation depth  $m$  is infinite.

3

Let  $A_{\rm T} = A_{\rm N} = 1\ \rm V$   ⇒   $m = 1$.  What is the spectrum  $S_+(f)$  of the analytical signal?  Which Dirac weights occur at  $f_{\rm T}$  as well as at  $f_{\rm T}± f_{\rm N}$?

$S_+(f_{\rm T}) \ = \ $

$\ \text{V}$
$S_+(f_{\rm T} ± f_{\rm N}) \ = \ $

$\ \text{V}$

4

Now let  $m = 1$.  Which fraction  $P_{\rm T}/P_{\rm S}$  of the total transmission power  $P_{\rm S}$  is due to the carrier alone,  and thus cannot be used for demodulation??

$P_{\rm T}/P_{\rm S} \ = \ $

5

Generalize the result from   (4)  for an arbitrary modulation depth  $m$.  What are the power ratios for  $m = 0.5$,  $m = 3$  and  $m → ∞$?

$m = 0.5\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $

$m = 3.0\text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $

$m → ∞ \text{:}\hspace{0.3cm} P_{\rm T}/P_{\rm S} \ = \ $

6

Based on the calculations so far,  which of the following statements seem reasonable to you?

$m ≈ 1$  is more favorable than a small  $m$  for energy reasons.
The carrier is only useful for envelope demodulation.


Solution

(1)  From the two equations

$$ A_{\rm max} = A_{\rm T}+A_{\rm N}=2\,\,{\rm V},\hspace{0.3cm} A_{\rm min} = A_{\rm T}-A_{\rm N}\hspace{0.05cm}$$

directly follows:

$$A_{\rm N} = (A_{\rm max} - A_{\rm min})/2,\hspace{0.3cm} A_{\rm T} = (A_{\rm max} + A_{\rm min})/2\hspace{0.05cm}.$$
  • Thus,  the modulation depth is
$$m = \frac{A_{\rm max} - A_{\rm min}}{A_{\rm max} + A_{\rm min}}\hspace{0.05cm}.$$
  • With the given numerical values,  one obtains:
$$ m_1 = \frac{2\,{\rm V} - 0.667\,{\rm V}}{2\,{\rm V} + 0.667\,{\rm V}} \hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}, \hspace{0.5cm} m_2 = \frac{2\,{\rm V} - 0\,{\rm V}}{2\,{\rm V} + 0\,{\rm V}} \hspace{0.15cm}\underline {= 1.0}\hspace{0.05cm}, \hspace{0.5cm} m_3 = \frac{2\,{\rm V} -(-1\,{\rm V})}{2\,{\rm V} + (-1\,{\rm V})} \hspace{0.15cm}\underline{=3.0}\hspace{0.05cm}.$$


(2)  Answers 1 and 3  are correct:

  • In this case,  $A_{\rm T} = 0$,  which means it is indeed  "DSB-AM without carrier".
  • The modulation depth  $m = A_{\rm N}/A_{\rm T}$  is infinitely large.


Analytical signal's spectrum

(3)  The spectrum  $S_+(f)$  is composed of three Dirac delta lines for each modulation depth   $m$  with the following weights:

  • $A_{\rm T}$  $($at  $f = f_{\rm T})$,
  • $m/2 · A_{\rm T}$  $($at  $f = f_{\rm T} ± f_{\rm N})$.


For  $m = 1$,  the weights are obtained according to the graph:

  • $S_+(f_{\rm T}) = 1\ \rm V$,
  • $S_+(f_{\rm T} ± f_{\rm T}) = 0.5\ \rm V$.


(4)  The power (mean square) of a harmonic oscillation with amplitude   $A_{\rm T} = 1 \ \rm V$  referenced to the   $1 \ Ω$  resistor is:

$$P_{\rm T} ={A_{\rm T}^2}/{2} = 0.5\,{\rm V}^2 \hspace{0.05cm}.$$
  • In the same way,  for the powers of the lower and the upper sideband we obtain:
$$P_{\rm LSB} = P_{\rm USB} =({A_{\rm N}}/{2})^2/2 = 0.125\,{\rm V}^2 \hspace{0.05cm}.$$
  • Thus,  for  $m=1$,  the ratio we are looking for is:
$${P_{\rm T}}/{P_{\rm S}}= \frac{P_{\rm T}}{P_{\rm USB} + P_{\rm T}+ P_{\rm OSB}}= \frac{0.5\,{\rm V}^2}{0.125\,{\rm V}^2 + 0.5\,{\rm V}^2+ 0.125\,{\rm V}^2}= 2/3\hspace{0.15cm}\underline { = 0.667}\hspace{0.05cm}.$$


(5)  Using the Dirac weights  $m/2 · A_{\rm T}$  of the two sidebands corresponding to subtask  (3),  we get:

$${P_{\rm T}}/{P_{\rm S}}= \frac{A_{\rm T}^2/2}{A_{\rm T}^2/2 + 2 \cdot (m/2)^2 \cdot A_{\rm T}^2/2}= \frac{2}{2 + m^2}\hspace{0.05cm}.$$
  • This leads to the numerical values   $8/9 = 0.889$  $($for  $m = 0.5)$,     $2/11 = 0.182$  $($for  $m = 3)$,     $0$  $($for  $m \to ∞$).


(6)  Both statements  are true:

  • The addition of the carrier only makes sense in order to use the simpler envelope demodulator.  This is only possible for  $m \le 1$.
  • However,  should the modulation depth be  $m > 1$  and the use of a synchronous demodulator therefore be required,  the carrier should be (almost) completely omitted for energy reasons.
  • Similarly due to energy concerns,  if an envelope demodulator is used,  the largest possible modulation depth  $m < 1$    ⇒   $m \to 1$  should be aimed for.
  • However,  a small residual carrier can facilitate carrier recovery,  which is needed in a synchronous demodulator for frequency and phase synchronization.  Thus,  the second statement is only conditionally correct.