Difference between revisions of "Aufgaben:Exercise 3.8: Modulation Index and Bandwidth"

From LNTwww
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Frequenzmodulation (FM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Frequency_Modulation_(FM)
 
}}
 
}}
  
[[File:P_ID1105__Mod_A_3_7.png|right|frame|Werte der Besselfunktionen]]
+
[[File:P_ID1105__Mod_A_3_7.png|right|frame|Bessel function values]]
Eine harmonische Schwingung der Form
+
A harmonic oscillation of the form
 
:$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})$$
 
:$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})$$
wird winkelmoduliert und dann das einseitige Betragsspektrum  $|S_+(f)|$  ermittelt.  
+
is angle-modulated and then the one-sided magnitude spectrum  $|S_+(f)|$  is obtained.  
  
*Mit der Nachrichtenfrequenz  $f_{\rm N} = 2 \ \rm kHz$  sind folgende Spektrallinien mit folgenden Gewichten zu erkennen:
+
*with a message frequency of  $f_{\rm N} = 2 \ \rm kHz$  the following spectral lines can be seen with the following weights:
 
:$$|S_{\rm +}(98\,{\rm kHz})| = |S_{\rm +}(102\,{\rm kHz})| = 1.560\,{\rm V}\hspace{0.05cm},$$ $$|S_{\rm +}(96\,{\rm kHz})| = |S_{\rm +}(104\,{\rm kHz})| = 1.293\,{\rm V}\hspace{0.05cm},$$
 
:$$|S_{\rm +}(98\,{\rm kHz})| = |S_{\rm +}(102\,{\rm kHz})| = 1.560\,{\rm V}\hspace{0.05cm},$$ $$|S_{\rm +}(96\,{\rm kHz})| = |S_{\rm +}(104\,{\rm kHz})| = 1.293\,{\rm V}\hspace{0.05cm},$$
 
:$$ |S_{\rm +}(94\,{\rm kHz})| = |S_{\rm +}(106\,{\rm kHz})| = 0.594\,{\rm V}\hspace{0.05cm}.$$
 
:$$ |S_{\rm +}(94\,{\rm kHz})| = |S_{\rm +}(106\,{\rm kHz})| = 0.594\,{\rm V}\hspace{0.05cm}.$$
:Weitere Spektrallinien folgen mit jeweiligem Frequenzabstand  $f_{\rm N} = 2 \ \rm kHz$, sind hier jedoch nicht angegeben und können vernachlässigt werden.
+
:Further spectral lines follow each with frequency spacing  $f_{\rm N} = 2 \ \rm kHz$, but are not given here and can be ignored.
  
*Erhöht man die Nachrichtenfrequenz auf  $f_{\rm N} = 4 \ \rm kHz$, so gibt es die dominanten Linien
+
*If one increases the message frequency to  $f_{\rm N} = 4 \ \rm kHz$, there occur dominant lines
 
:$$|S_{\rm +}(100\,{\rm kHz})| = 2.013\,{\rm V}\hspace{0.05cm},$$  
 
:$$|S_{\rm +}(100\,{\rm kHz})| = 2.013\,{\rm V}\hspace{0.05cm},$$  
 
:$$|S_{\rm +}(96\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(104\,{\rm kHz})| = 1.494\,{\rm V}\hspace{0.05cm},$$
 
:$$|S_{\rm +}(96\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(104\,{\rm kHz})| = 1.494\,{\rm V}\hspace{0.05cm},$$
 
:$$ |S_{\rm +}(92\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(108\,{\rm kHz})| = 0.477\,{\rm V},$$
 
:$$ |S_{\rm +}(92\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(108\,{\rm kHz})| = 0.477\,{\rm V},$$
:sowie weitere, vernachlässigbare Diraclinien im Abstand  $f_{\rm N} = 4 \ \rm kHz$.
+
:as well as further, negligible Dirac delta lines with spacing  $f_{\rm N} = 4 \ \rm kHz$.
  
  
Line 26: Line 26:
  
  
 
+
''Hints:''
''Hinweise:''
+
*This exercise belongs to the chapter  [[Modulation_Methods/Frequency_Modulation_(FM)|Frequency Modulation]].
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Frequenzmodulation_(FM)|Frequenzmodulation]].
+
*Reference is also made to the chapter   [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]]  and particularly to the section  [[Modulation_Methods/Frequency_Modulation_(FM)#Signal_characteristics_with_frequency_modulation|Signal characteristics with frequency modulation]].
*Bezug genommen wird aber auch auf das Kapitel   [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]]  und auf den Abschnitt  [[Modulationsverfahren/Frequenzmodulation_(FM)#Signalverl.C3.A4ufe_bei_Frequenzmodulation|Signalverläufe bei Frequenzmodulation]].
+
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Modulationsverfahren liegt hier vor?
+
{Which modulation method is used here?
 
|type="()"}
 
|type="()"}
- Phasenmodulation.
+
- Phase modulation.
+ Frequenzmodulation.
+
+ Frequency modulation.
  
  
{Wie groß ist der Modulationsindex &nbsp;$η_2$&nbsp; bei der Nachrichtenfrequenz &nbsp;$f_{\rm N} = 2 \ \rm kHz$?
+
{What is the modulation index &nbsp;$η_2$&nbsp; at message frequency &nbsp;$f_{\rm N} = 2 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$η_2 \ = \ $ { 2.4 3% }  
 
$η_2 \ = \ $ { 2.4 3% }  
  
{Wie groß ist die Trägeramplitude?
+
{What is the carrier amplitude?
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm T} \ = \ $ { 3 3% } $\ \rm V$  
 
$A_{\rm T} \ = \ $ { 3 3% } $\ \rm V$  
  
{Geben Sie die Bandbreite &nbsp;$B_2$ an, wenn mit &nbsp;$f_{\rm N} = 2 \ \rm kHz$&nbsp; ein Klirrfaktor  &nbsp;$K < 1\%$&nbsp; gefordert wird.
+
{Specify the bandwidth &nbsp;$B_2$ for &nbsp;$f_{\rm N} = 2 \ \rm kHz$&nbsp; if a distortion factor &nbsp;$K < 1\%$&nbsp; is desired.
 
|type="{}"}
 
|type="{}"}
 
$B_2 \ = \ $ { 17.6 3% } $\ \rm kHz$  
 
$B_2 \ = \ $ { 17.6 3% } $\ \rm kHz$  
  
{Wie groß ist der Modulationsindex &nbsp;$η_4$&nbsp; mit der Nachrichtenfrequenz &nbsp;$f_{\rm N} = 4 \ \rm kHz$?
+
{What is the modulation index&nbsp;$η_4$&nbsp; at message frequency &nbsp;$f_{\rm N} = 4 \ \rm kHz$?
 
|type="{}"}
 
|type="{}"}
 
$η_4\ = \ $ { 1.2 3% }  
 
$η_4\ = \ $ { 1.2 3% }  
  
{Welche Kanalbandbreite &nbsp;$B_4$&nbsp; ist nun erforderlich, um &nbsp;$K < 1\%$&nbsp; zu gewährleisten?
+
{What channel bandwidth &nbsp;$B_4$&nbsp; is now required to ensure &nbsp;$K < 1\%$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$B_4 \ = \ $ { 25.6 3% } $\ \rm kHz$  
 
$B_4 \ = \ $ { 25.6 3% } $\ \rm kHz$  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Es handelt sich um eine Frequenzmodulation &nbsp; ⇒ &nbsp; <u>Antwort 2</u>.  
+
'''(1)'''&nbsp;We are dealing with a frequency modulation⇒ &nbsp; <u>Answer 2</u>.  
*Bei Phasenmodulation würden sich die Gewichte der Diraclinien bei der Frequenzverdopplung nicht ändern.
+
*In phase modulation, the weights of the Dirac delta lines would not change when the frequency is doubled.
  
  
'''(2)'''&nbsp; Die angegebene Spektralfunktion lässt aufgrund von Symmetrieeigenschaften auf die Trägerfrequenz $f_{\rm T} = 100 \ \rm kHz$ schließen. Da bei $f_{\rm N} = 2 \ \rm kHz$ die Spektrallinie bei $f_{\rm T} = 100 \ \rm kHz$ verschwindet, ist $η_2 \hspace{0.15cm}\underline { ≈ 2.4}$ zu vermuten. Eine Kontrolle der weiteren Impulsgewichte bestätigt das Ergebnis:
+
'''(2)'''&nbsp; The spectral function given suggests the carrier frequency&nbsp; $f_{\rm T} = 100 \ \rm kHz$&nbsp; due to the symmetry properties.  
 +
*Since at &nbsp; $f_{\rm N} = 2 \ \rm kHz$&nbsp; the spectral line disappears at&nbsp; $f_{\rm T} = 100 \ \rm kHz$&nbsp;, we can assume $η_2 \hspace{0.15cm}\underline { ≈ 2.4}$&nbsp;.  
 +
*A check of the other pulse weights confirms this result:
 
:$$\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.$$
 
:$$\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Die Gewichte der Diraclinien bei $f_{\rm T} + n · f_{\rm N}$ lauten allgemein:
 
:$$D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.05cm}.$$
 
&rArr; &nbsp;  $A_{\rm T} = D_1/{\rm J}_1(η) = 1.560\ \rm  V/0.520\hspace{0.15cm}\underline { = 3 \ V}$.
 
  
  
'''(4)'''&nbsp; Mit der Forderung $K < 1\%$ gilt folgende Faustformel (''Carson–Regel''):
+
'''(3)'''&nbsp; The weights of the Dirac delta lines at&nbsp; $f_{\rm T} + n · f_{\rm N}$&nbsp; are generally:
 +
:$$D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  A_{\rm T} = D_1/{\rm J}_1(η) = 1.560\ \rm  V/0.520\hspace{0.15cm}\underline { = 3 \ V}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Given the requirement&nbsp; $K < 1\%$&nbsp;, one can use the following rule of thumb &nbsp; (''Carson's rule''):
 
:$$B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.$$
 
:$$B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.$$
&rArr; &nbsp; Somit stehen dem Empfänger die Fourierkoeffizienten $D_{–4}$, ... , $D_4$ zur Verfügung.
+
*Thus, the Fourier coefficients &nbsp; $D_{–4}$, ... , $D_4$&nbsp; are available.
  
  
'''(5)'''&nbsp; Bei Frequenzmodulation gilt allgemein:
+
 
 +
'''(5)'''&nbsp; For frequency modulation, the general rule is:
 
:$$\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.$$
 
:$$\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.$$
&rArr; &nbsp; Durch Verdopplung der Nachrichtenfrequenz $f_{\rm N}$ wird also der Modulationsindex halbiert: &nbsp; $η_4 = η_2/2\hspace{0.15cm}\underline { = 1.2}$.
+
*Thus, by doubling the message frequency $f_{\rm N}$, the modulation index is halved: &nbsp; $η_4 = η_2/2\hspace{0.15cm}\underline { = 1.2}$.
 +
 
  
  
'''(6)'''&nbsp; Die für $K < 1\%$ erforderliche Kanalbandbreite ergibt sich nach gleicher Rechnung wie in der Teilaufgabe '''(4)''' zu
+
'''(6)'''&nbsp; Using the same calculation as in question &nbsp; '''(4)'''&nbsp;, the channel bandwidth necessary for &nbsp; $K < 1\%$&nbsp; is obtained using
 
:$$B_4 = 3.2 · 8\ \rm  kHz \hspace{0.15cm}\underline {= 25.6 \ \rm  kHz}.$$
 
:$$B_4 = 3.2 · 8\ \rm  kHz \hspace{0.15cm}\underline {= 25.6 \ \rm  kHz}.$$
&rArr; &nbsp; Aufgrund des um den Faktor $2$ kleineren Modulationsindex genügt es für die Begrenzung des Klirrfaktors auf $1\%$, die Fourierkoeffizienten $D_{–3}$, ... , $D_3$ zu übertragen.
+
*Because the modulation index is only half as large, transmitting the Fourier coefficients &nbsp; $D_{–3}$, ... , $D_3$&nbsp;is sufficient for limiting the distortion factor to&nbsp; $1\%$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 96: Line 102:
  
  
[[Category:Aufgaben zu  Modulationsverfahren|^3.2 Frequenzmodulation (FM)^]]
+
[[Category:Modulation Methods: Exercises|^3.2 Frequency Modulation^]]

Latest revision as of 15:22, 18 January 2023

Bessel function values

A harmonic oscillation of the form

$$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})$$

is angle-modulated and then the one-sided magnitude spectrum  $|S_+(f)|$  is obtained.

  • with a message frequency of  $f_{\rm N} = 2 \ \rm kHz$  the following spectral lines can be seen with the following weights:
$$|S_{\rm +}(98\,{\rm kHz})| = |S_{\rm +}(102\,{\rm kHz})| = 1.560\,{\rm V}\hspace{0.05cm},$$ $$|S_{\rm +}(96\,{\rm kHz})| = |S_{\rm +}(104\,{\rm kHz})| = 1.293\,{\rm V}\hspace{0.05cm},$$
$$ |S_{\rm +}(94\,{\rm kHz})| = |S_{\rm +}(106\,{\rm kHz})| = 0.594\,{\rm V}\hspace{0.05cm}.$$
Further spectral lines follow each with frequency spacing  $f_{\rm N} = 2 \ \rm kHz$, but are not given here and can be ignored.
  • If one increases the message frequency to  $f_{\rm N} = 4 \ \rm kHz$, there occur dominant lines
$$|S_{\rm +}(100\,{\rm kHz})| = 2.013\,{\rm V}\hspace{0.05cm},$$
$$|S_{\rm +}(96\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(104\,{\rm kHz})| = 1.494\,{\rm V}\hspace{0.05cm},$$
$$ |S_{\rm +}(92\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(108\,{\rm kHz})| = 0.477\,{\rm V},$$
as well as further, negligible Dirac delta lines with spacing  $f_{\rm N} = 4 \ \rm kHz$.





Hints:



Questions

1

Which modulation method is used here?

Phase modulation.
Frequency modulation.

2

What is the modulation index  $η_2$  at message frequency  $f_{\rm N} = 2 \ \rm kHz$?

$η_2 \ = \ $

3

What is the carrier amplitude?

$A_{\rm T} \ = \ $

$\ \rm V$

4

Specify the bandwidth  $B_2$ for  $f_{\rm N} = 2 \ \rm kHz$  if a distortion factor  $K < 1\%$  is desired.

$B_2 \ = \ $

$\ \rm kHz$

5

What is the modulation index $η_4$  at message frequency  $f_{\rm N} = 4 \ \rm kHz$?

$η_4\ = \ $

6

What channel bandwidth  $B_4$  is now required to ensure  $K < 1\%$ ?

$B_4 \ = \ $

$\ \rm kHz$


Solution

(1) We are dealing with a frequency modulation⇒   Answer 2.

  • In phase modulation, the weights of the Dirac delta lines would not change when the frequency is doubled.


(2)  The spectral function given suggests the carrier frequency  $f_{\rm T} = 100 \ \rm kHz$  due to the symmetry properties.

  • Since at   $f_{\rm N} = 2 \ \rm kHz$  the spectral line disappears at  $f_{\rm T} = 100 \ \rm kHz$ , we can assume $η_2 \hspace{0.15cm}\underline { ≈ 2.4}$ .
  • A check of the other pulse weights confirms this result:
$$\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.$$


(3)  The weights of the Dirac delta lines at  $f_{\rm T} + n · f_{\rm N}$  are generally:

$$D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A_{\rm T} = D_1/{\rm J}_1(η) = 1.560\ \rm V/0.520\hspace{0.15cm}\underline { = 3 \ V}.$$


(4)  Given the requirement  $K < 1\%$ , one can use the following rule of thumb   (Carson's rule):

$$B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.$$
  • Thus, the Fourier coefficients   $D_{–4}$, ... , $D_4$  are available.


(5)  For frequency modulation, the general rule is:

$$\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.$$
  • Thus, by doubling the message frequency $f_{\rm N}$, the modulation index is halved:   $η_4 = η_2/2\hspace{0.15cm}\underline { = 1.2}$.


(6)  Using the same calculation as in question   (4) , the channel bandwidth necessary for   $K < 1\%$  is obtained using

$$B_4 = 3.2 · 8\ \rm kHz \hspace{0.15cm}\underline {= 25.6 \ \rm kHz}.$$
  • Because the modulation index is only half as large, transmitting the Fourier coefficients   $D_{–3}$, ... , $D_3$ is sufficient for limiting the distortion factor to  $1\%$.