Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.8: Modulation Index and Bandwidth"

From LNTwww
m
 
(7 intermediate revisions by one other user not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Frequenzmodulation (FM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Frequency_Modulation_(FM)
 
}}
 
}}
  
[[File:P_ID1105__Mod_A_3_7.png|right|frame|Werte der Besselfunktionen]]
+
[[File:P_ID1105__Mod_A_3_7.png|right|frame|Bessel function values]]
Eine harmonische Schwingung der Form
+
A harmonic oscillation of the form
 
:q(t)=ANcos(2πfNt+ϕN)
 
:q(t)=ANcos(2πfNt+ϕN)
wird winkelmoduliert und dann das einseitige Betragsspektrum  |S+(f)|  ermittelt.  
+
is angle-modulated and then the one-sided magnitude spectrum  |S+(f)|  is obtained.  
  
*Mit der Nachrichtenfrequenz  fN=2 kHz  sind folgende Spektrallinien mit folgenden Gewichten zu erkennen:
+
*with a message frequency of  fN=2 kHz  the following spectral lines can be seen with the following weights:
 
:|S+(98kHz)|=|S+(102kHz)|=1.560V, |S+(96kHz)|=|S+(104kHz)|=1.293V,
 
:|S+(98kHz)|=|S+(102kHz)|=1.560V, |S+(96kHz)|=|S+(104kHz)|=1.293V,
 
:|S+(94kHz)|=|S+(106kHz)|=0.594V.
 
:|S+(94kHz)|=|S+(106kHz)|=0.594V.
:Weitere Spektrallinien folgen mit jeweiligem Frequenzabstand  fN=2 kHz, sind hier jedoch nicht angegeben und können vernachlässigt werden.
+
:Further spectral lines follow each with frequency spacing  fN=2 kHz, but are not given here and can be ignored.
  
*Erhöht man die Nachrichtenfrequenz auf  fN=4 kHz, so gibt es die dominanten Linien
+
*If one increases the message frequency to  fN=4 kHz, there occur dominant lines
 
:|S+(100kHz)|=2.013V,  
 
:|S+(100kHz)|=2.013V,  
 
:|S+(96kHz)|=|S+(104kHz)|=1.494V,
 
:|S+(96kHz)|=|S+(104kHz)|=1.494V,
 
:|S+(92kHz)|=|S+(108kHz)|=0.477V,
 
:|S+(92kHz)|=|S+(108kHz)|=0.477V,
:sowie weitere, vernachlässigbare Diraclinien im Abstand  fN=4 kHz.
+
:as well as further, negligible Dirac delta lines with spacing  fN=4 kHz.
  
  
Line 37: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Modulationsverfahren liegt hier vor?
+
{Which modulation method is used here?
 
|type="()"}
 
|type="()"}
- Phasenmodulation.
+
- Phase modulation.
+ Frequenzmodulation.
+
+ Frequency modulation.
  
  
{Wie groß ist der Modulationsindex &nbsp;η_2&nbsp; bei der Nachrichtenfrequenz &nbsp;f_{\rm N} = 2 \ \rm kHz?
+
{What is the modulation index &nbsp;η_2&nbsp; at message frequency &nbsp;f_{\rm N} = 2 \ \rm kHz?
 
|type="{}"}
 
|type="{}"}
 
η_2 \ = \ { 2.4 3% }  
 
η_2 \ = \ { 2.4 3% }  
  
{Wie groß ist die Trägeramplitude?
+
{What is the carrier amplitude?
 
|type="{}"}
 
|type="{}"}
 
A_{\rm T} \ = \ { 3 3% } \ \rm V  
 
A_{\rm T} \ = \ { 3 3% } \ \rm V  
  
{Geben Sie die Bandbreite &nbsp;B_2 an, wenn mit &nbsp;f_{\rm N} = 2 \ \rm kHz&nbsp; ein Klirrfaktor  &nbsp;K < 1\%&nbsp; gefordert wird.
+
{Specify the bandwidth &nbsp;B_2 for &nbsp;f_{\rm N} = 2 \ \rm kHz&nbsp; if a distortion factor &nbsp;K < 1\%&nbsp; is desired.
 
|type="{}"}
 
|type="{}"}
 
B_2 \ = \ { 17.6 3% } \ \rm kHz  
 
B_2 \ = \ { 17.6 3% } \ \rm kHz  
  
{Wie groß ist der Modulationsindex &nbsp;η_4&nbsp; mit der Nachrichtenfrequenz &nbsp;f_{\rm N} = 4 \ \rm kHz?
+
{What is the modulation index&nbsp;η_4&nbsp; at message frequency &nbsp;f_{\rm N} = 4 \ \rm kHz?
 
|type="{}"}
 
|type="{}"}
 
η_4\ = \ { 1.2 3% }  
 
η_4\ = \ { 1.2 3% }  
  
{Welche Kanalbandbreite &nbsp;B_4&nbsp; ist nun erforderlich, um &nbsp;K < 1\%&nbsp; zu gewährleisten?
+
{What channel bandwidth &nbsp;B_4&nbsp; is now required to ensure &nbsp;K < 1\%&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
B_4 \ = \ { 25.6 3% } \ \rm kHz  
 
B_4 \ = \ { 25.6 3% } \ \rm kHz  
Line 66: Line 66:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Es handelt sich um eine Frequenzmodulation &nbsp; ⇒ &nbsp; <u>Antwort 2</u>.  
+
'''(1)'''&nbsp;We are dealing with a frequency modulation⇒ &nbsp; <u>Answer 2</u>.  
*Bei Phasenmodulation würden sich die Gewichte der Diraclinien bei der Frequenzverdopplung nicht ändern.
+
*In phase modulation, the weights of the Dirac delta lines would not change when the frequency is doubled.
  
  
 
+
'''(2)'''&nbsp; The spectral function given suggests the carrier frequency&nbsp; f_{\rm T} = 100 \ \rm kHz&nbsp; due to the symmetry properties.  
'''(2)'''&nbsp; Die angegebene Spektralfunktion lässt aufgrund von Symmetrieeigenschaften auf die Trägerfrequenz&nbsp; f_{\rm T} = 100 \ \rm kHz&nbsp; schließen.  
+
*Since at &nbsp; f_{\rm N} = 2 \ \rm kHz&nbsp; the spectral line disappears at&nbsp; f_{\rm T} = 100 \ \rm kHz&nbsp;, we can assume η_2 \hspace{0.15cm}\underline { ≈ 2.4}&nbsp;.  
*Da bei&nbsp; f_{\rm N} = 2 \ \rm kHz&nbsp; die Spektrallinie bei&nbsp; f_{\rm T} = 100 \ \rm kHz&nbsp; verschwindet, ist&nbsp; η_2 \hspace{0.15cm}\underline { ≈ 2.4}&nbsp; zu vermuten.  
+
*A check of the other pulse weights confirms this result:
*Eine Kontrolle der weiteren Impulsgewichte bestätigt das Ergebnis:
 
 
:\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.
 
:\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.
  
  
  
'''(3)'''&nbsp; Die Gewichte der Diraclinien bei&nbsp; f_{\rm T} + n · f_{\rm N}&nbsp; lauten allgemein:
+
'''(3)'''&nbsp; The weights of the Dirac delta lines at&nbsp; f_{\rm T} + n · f_{\rm N}&nbsp; are generally:
 
:D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  A_{\rm T} = D_1/{\rm J}_1(η) = 1.560\ \rm  V/0.520\hspace{0.15cm}\underline { = 3 \ V}.
 
:D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  A_{\rm T} = D_1/{\rm J}_1(η) = 1.560\ \rm  V/0.520\hspace{0.15cm}\underline { = 3 \ V}.
  
  
  
'''(4)'''&nbsp; Mit der Forderung&nbsp; K < 1\%&nbsp; gilt folgende Faustformel&nbsp; (''Carson–Regel''):
+
'''(4)'''&nbsp; Given the requirement&nbsp; K < 1\%&nbsp;, one can use the following rule of thumb &nbsp; (''Carson's rule''):
 
:B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.
 
:B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.
*Somit stehen dem Empfänger die Fourierkoeffizienten&nbsp; D_{–4}, ... , D_4&nbsp; zur Verfügung.
+
*Thus, the Fourier coefficients &nbsp; D_{–4}, ... , D_4&nbsp; are available.
  
  
  
'''(5)'''&nbsp; Bei Frequenzmodulation gilt allgemein:
+
'''(5)'''&nbsp; For frequency modulation, the general rule is:
 
:\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.
 
:\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.
*Durch Verdopplung der Nachrichtenfrequenz f_{\rm N} wird also der Modulationsindex halbiert: &nbsp; η_4 = η_2/2\hspace{0.15cm}\underline { = 1.2}.
+
*Thus, by doubling the message frequency f_{\rm N}, the modulation index is halved: &nbsp; η_4 = η_2/2\hspace{0.15cm}\underline { = 1.2}.
  
  
  
'''(6)'''&nbsp; Die für&nbsp; K < 1\%&nbsp; erforderliche Kanalbandbreite ergibt sich nach gleicher Rechnung wie in der Teilaufgabe&nbsp; '''(4)'''&nbsp; zu
+
'''(6)'''&nbsp; Using the same calculation as in question &nbsp; '''(4)'''&nbsp;, the channel bandwidth necessary for &nbsp; K < 1\%&nbsp; is obtained using
 
:B_4 = 3.2 · 8\ \rm  kHz \hspace{0.15cm}\underline {= 25.6 \ \rm  kHz}.
 
:B_4 = 3.2 · 8\ \rm  kHz \hspace{0.15cm}\underline {= 25.6 \ \rm  kHz}.
*Aufgrund des nur halb so großen Modulationsindex' genügt es für die Begrenzung des Klirrfaktors auf&nbsp; 1\%, die Fourierkoeffizienten&nbsp; D_{–3}, ... , D_3&nbsp; zu übertragen.
+
*Because the modulation index is only half as large, transmitting the Fourier coefficients &nbsp; D_{–3}, ... , D_3&nbsp;is sufficient for limiting the distortion factor to&nbsp; 1\%.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 16:22, 18 January 2023

Bessel function values

A harmonic oscillation of the form

q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})

is angle-modulated and then the one-sided magnitude spectrum  |S_+(f)|  is obtained.

  • with a message frequency of  f_{\rm N} = 2 \ \rm kHz  the following spectral lines can be seen with the following weights:
|S_{\rm +}(98\,{\rm kHz})| = |S_{\rm +}(102\,{\rm kHz})| = 1.560\,{\rm V}\hspace{0.05cm}, |S_{\rm +}(96\,{\rm kHz})| = |S_{\rm +}(104\,{\rm kHz})| = 1.293\,{\rm V}\hspace{0.05cm},
|S_{\rm +}(94\,{\rm kHz})| = |S_{\rm +}(106\,{\rm kHz})| = 0.594\,{\rm V}\hspace{0.05cm}.
Further spectral lines follow each with frequency spacing  f_{\rm N} = 2 \ \rm kHz, but are not given here and can be ignored.
  • If one increases the message frequency to  f_{\rm N} = 4 \ \rm kHz, there occur dominant lines
|S_{\rm +}(100\,{\rm kHz})| = 2.013\,{\rm V}\hspace{0.05cm},
|S_{\rm +}(96\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(104\,{\rm kHz})| = 1.494\,{\rm V}\hspace{0.05cm},
|S_{\rm +}(92\,{\rm kHz})|\hspace{0.2cm} = |S_{\rm +}(108\,{\rm kHz})| = 0.477\,{\rm V},
as well as further, negligible Dirac delta lines with spacing  f_{\rm N} = 4 \ \rm kHz.





Hints:



Questions

1

Which modulation method is used here?

Phase modulation.
Frequency modulation.

2

What is the modulation index  η_2  at message frequency  f_{\rm N} = 2 \ \rm kHz?

η_2 \ = \

3

What is the carrier amplitude?

A_{\rm T} \ = \

\ \rm V

4

Specify the bandwidth  B_2 for  f_{\rm N} = 2 \ \rm kHz  if a distortion factor  K < 1\%  is desired.

B_2 \ = \

\ \rm kHz

5

What is the modulation index η_4  at message frequency  f_{\rm N} = 4 \ \rm kHz?

η_4\ = \

6

What channel bandwidth  B_4  is now required to ensure  K < 1\% ?

B_4 \ = \

\ \rm kHz


Solution

(1) We are dealing with a frequency modulation⇒   Answer 2.

  • In phase modulation, the weights of the Dirac delta lines would not change when the frequency is doubled.


(2)  The spectral function given suggests the carrier frequency  f_{\rm T} = 100 \ \rm kHz  due to the symmetry properties.

  • Since at   f_{\rm N} = 2 \ \rm kHz  the spectral line disappears at  f_{\rm T} = 100 \ \rm kHz , we can assume η_2 \hspace{0.15cm}\underline { ≈ 2.4} .
  • A check of the other pulse weights confirms this result:
\frac { |S_{\rm +}(f =102\,{\rm kHz})|}{ |S_{\rm +}(f =104\,{\rm kHz})|} = 1.206,\hspace{0.2cm} \frac { {\rm J}_1(2.4)}{ {\rm J}_2(2.4)}= 1.206 \hspace{0.05cm}.


(3)  The weights of the Dirac delta lines at  f_{\rm T} + n · f_{\rm N}  are generally:

D_n = A_{\rm T} \cdot { {\rm J}_n(\eta)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_1 = A_{\rm T} \cdot { {\rm J}_1(\eta)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} A_{\rm T} = D_1/{\rm J}_1(η) = 1.560\ \rm V/0.520\hspace{0.15cm}\underline { = 3 \ V}.


(4)  Given the requirement  K < 1\% , one can use the following rule of thumb   (Carson's rule):

B_{\rm 2} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.15cm}\underline {= 17.6\,{\rm kHz}}\hspace{0.05cm}.
  • Thus, the Fourier coefficients   D_{–4}, ... , D_4  are available.


(5)  For frequency modulation, the general rule is:

\eta = \frac{K_{\rm FM} \cdot A_{\rm N}}{ \omega_{\rm N}} \hspace{0.05cm}.
  • Thus, by doubling the message frequency f_{\rm N}, the modulation index is halved:   η_4 = η_2/2\hspace{0.15cm}\underline { = 1.2}.


(6)  Using the same calculation as in question   (4) , the channel bandwidth necessary for   K < 1\%  is obtained using

B_4 = 3.2 · 8\ \rm kHz \hspace{0.15cm}\underline {= 25.6 \ \rm kHz}.
  • Because the modulation index is only half as large, transmitting the Fourier coefficients   D_{–3}, ... , D_3 is sufficient for limiting the distortion factor to  1\%.