Difference between revisions of "Aufgaben:Exercise 4.4Z: Signal-to-Noise Ratio with PCM"

From LNTwww
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Pulscodemodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Pulse_Code_Modulation
 
}}
 
}}
  
[[File:P_ID1619__Mod_Z_4_4.png|right|frame|Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation]]
+
[[File:EN_Mod_Z_4_4.png|right|frame|Signal-to-noise ratio of PCM 30/32 compared to ZSB amplitude modulation]]
Die Grafik zeigt den Sinken–Störabstand  $10 · \lg \ ρ_v$  für die Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt  $ρ_v = ξ$, wobei die Leistungskenngröße
+
The graph shows the signal-to-noise ratio  $10 \lg \ ρ_v$  for pulse code modulation  $\rm (PCM)$  compared to analog double-sideband amplitude modulation, abbreviated as  "$\rm DSB-AM$". 
 +
 
 +
For the latter,   $ρ_v = ξ$,  where the persormanc parameter
 
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$
 
:$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$
folgende Systemparameter zusammenfasst:
+
summarizes the following system parameters:
:* den frequenzunabhängigen Dämpfungsfaktor  $α$  des Übertragungskanals,
+
:* the frequency-independent attenuation factor  $α$  of the transmission channel,
:* die Leistung  $P_{\rm S}$  des Sendsignals  $s(t)$, auch kurz Sendeleistung genannt,
+
:* the power  $P_{\rm S}$  of the transmitted signal  $s(t)$,&nbsp, also called  "transmit power"  for short,
:* die Nachrichtenfrequenz  $f_{\rm N}$  (Bandbreite) des cosinusförmigen Quellensignals  $q(t)$,
+
:* the message frequency  $f_{\rm N}$  (bandwidth)  of the cosine source signal  $q(t)$,
:* die Rauschleistungsdichte  $N_0$  des AWGN–Rauschens.
+
:* the noise power density  $N_0$  of the AWGN noise.
  
  
Für das PCM–System wurde auf der Seite  [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]] folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:
+
For the PCM system,  the following approximation for the sink SNR was given in the section  [[Modulation_Methods/Pulse_Code_Modulation#Estimation_of_SNR_degradation_due_to_transmission_errors|"Estimation of SNR degradation due to bit errors"]],  which also takes into account transmission errors due to AWGN noise:
 
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
 
:$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
*Hierbei bezeichnet  $N$  die Anzahl der Bit pro Abtastwert und  $p_{\rm B}$  die Bitfehlerwahrscheinlichkeit.
+
*Here  $N$  denotes the number of bits per sample and  $p_{\rm B}$  the bit error probability.
* Da  $ξ$  bei digitaler Modulation auch als die ''Signalenergie pro Bit''  bezogen auf die ''Rauschleistungsdichte'' $(E_{\rm B}/N_0)$ interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal  ${\rm Q}(x)$  näherungsweise:
+
* Since  $ξ$  can in digital modulation also be interpreted as the  "signal energy per bit"  related to the  "noise power density"  $(E_{\rm B}/N_0)$,  with the complementary Gaussian error signal  ${\rm Q}(x)$  approximately:
 
:$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$
 
:$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$
  
Line 23: Line 25:
  
  
''Hinweise:''
+
Hints:
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]].
+
*The exercise belongs to the chapter  [[Modulation_Methods/Pulse_Code_Modulation|"Pulse Code Modulation"]].
*Bezug genommen wird insbesondere auf die Seiten  [[Modulationsverfahren/Pulscodemodulation#Einfluss_von_.C3.9Cbertragungsfehlern|Einfluss von Übertragungsfehlern]]  und  [[Modulationsverfahren/Pulscodemodulation#Absch.C3.A4tzung_der_SNR-Degradation_durch_.C3.9Cbertragungsfehler|Abschätzung der SNR-Degradation durch Bitfehler]].
+
*Reference is made in particular to the sections  [[Modulation_Methods/Pulse_Code_Modulation#Influence_of_transmission_errors|"Influence of transmission errors"]]   and   [[Modulation_Methods/Pulse_Code_Modulation#Estimation_of_SNR_degradation_due_to_transmission_errors|"Estimation of SNR degradation due to transmission errors"]].
*Bei der hier betrachteten PCM handelt es sich um die '''PCM 30/32''', deren Systemparameter zum Beispiel in der [[Aufgaben:4.1_PCM–System_30/32 |Aufgabe 4.1]] angegeben sind.
+
*The PCM considered here is the  '''PCM 30/32''',  whose system parameters are given,  e.g. in  [[Aufgaben:Exercise_4.1:_PCM_System_30/32 |Exercise 4.1]] .
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Bit pro Abtastwert &nbsp; &rArr; &nbsp; $N = N_1$&nbsp; verwendet das betrachtete PCM–System?
+
{How many bits per sample &nbsp; &rArr; &nbsp; $N = N_1$&nbsp; does the PCM system under consideration use?
 
|type="{}"}
 
|type="{}"}
 
$N_1 \ = \ $ { 8 3% }  
 
$N_1 \ = \ $ { 8 3% }  
  
{Wieviele Bit pro Abtastwert  &nbsp; &rArr; &nbsp; $N = N_2$&nbsp; müsste man verwenden, damit &nbsp;$10 · \lg \ ρ_v > 64 \ \rm dB$&nbsp; (Musikqualität) erreicht wird?
+
{How many bits per sample &nbsp; &rArr; &nbsp; $N = N_2$&nbsp; would have to be used to achieve &nbsp;$10 \lg \ ρ_v > 64 \ \rm dB$&nbsp; ("music quality")?
 
|type="{}"}
 
|type="{}"}
$N_2 \ = \ $ { 11 3% }  
+
$N_2 \ = \ $ { 11 3% }  
  
{Welche (logarithmierte) Leistungskenngröße &nbsp;$ξ_{40\ \rm dB}$&nbsp; ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich &nbsp;$40\ \rm dB$&nbsp; ist?
+
{What&nbsp; (logarithmized)&nbsp; performance parameter &nbsp;$ξ_{40\ \rm dB}$&nbsp; is required for 8-bit PCM to have a signal-to-noise ratio of &nbsp;$40\ \rm dB$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$10 · \lg \ ξ_{40\ \rm dB} \ = \ $ { 10 3% } $\ \rm dB$  
+
$10 \lg \ ξ_{40\ \rm dB} \ = \ $ { 10 3% } $\ \rm dB$  
  
{Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der ZSB–AM reduzieren, um trotzdem &nbsp;$10 · \lg \ ρ_v = 40\ \rm   dB$&nbsp; zu erreichen?
+
{By what factor could the transmit power be reduced for PCM compared to&nbsp; "DSB-AM"&nbsp; to still achieve &nbsp;$10 \lg \ ρ_v = 40\ \rm dB$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
 
$K_\text{AM → PCM} \ = \ $ { 1000 3% }  
  
{Welche Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; ergibt sich für &nbsp;$10 · \lg \ ξ = 6\ \rm dB$&nbsp; und &nbsp;$N = N_1$ &nbsp; &rArr; &nbsp; Ergebnis der Teilaufgabe '''(1)'''?
+
{What is the bit error probability &nbsp;$p_{\rm B}$&nbsp; for &nbsp;$10 \lg \ ξ = 6\ \rm dB$&nbsp; and &nbsp;$N = N_1$ &nbsp; &rArr; &nbsp; result of the subtask&nbsp; '''(1)'''?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ = \ $ { 2.5 3% } $\ \%$
 
$p_{\rm B} \ = \ $ { 2.5 3% } $\ \%$
  
{Welches SNR würde sich bei gleichem &nbsp;$ξ$&nbsp; mit einer 3–Bit–PCM &nbsp; &rArr; &nbsp; $N = 3$&nbsp; ergeben?
+
{What would be the SNR for the same &nbsp;$ξ$&nbsp; with a 3-bit PCM &nbsp; &rArr; &nbsp; $N = 3$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$10 · \lg \ ρ_v \ = \ $ { 15.9 3% } $\ \rm dB$  
+
$10 \lg \ ρ_v \ = \ $ { 15.9 3% } $\ \rm dB$  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:
+
'''(1)'''&nbsp; The horizontal section of the PCM curve is determined by the quantization noise alone.&nbsp;
:$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
+
*Here,&nbsp; with the quantization step number&nbsp; $M = 2^N$:
Aus dem ablesbaren Störabstand $10 · \lg \ ρ_v ≈ 48 \ \rm dB$ folgt daraus $N_1\hspace{0.15cm}\underline { = 8}$ Bit pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.
+
:$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
 +
*From the readable signal-to-noise ratio&nbsp; $10 \lg \ ρ_v ≈ 48 \ \rm dB$&nbsp; it follows:<br>&nbsp; $N_1\hspace{0.15cm}\underline { = 8}$&nbsp; bits per sample and for the quantization level number&nbsp; $M = 256$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; From the above approximation,&nbsp; we obtain for&nbsp; $N_2\hspace{0.15cm}\underline { = 11}$&nbsp; bits per sample &nbsp; ⇒ &nbsp; $M = 2048$&nbsp; the signal-to-noise ratio&nbsp; $66 \ \rm dB$.
 +
*With&nbsp; $N = 10$ &nbsp; ⇒ &nbsp; $M = 1024$&nbsp; one reaches only approx.&nbsp; $60 \ \rm dB$.
 +
*For the compact disc&nbsp; $\rm (CD)$,&nbsp; the PCM parameters&nbsp; $N = 16$ &nbsp; ⇒ &nbsp; $M = 65536$ &nbsp; ⇒ &nbsp; $10 ⋅ \lg \ ρ_v > 96 \ \rm dB$&nbsp; are used.
  
  
'''(2)'''&nbsp;  Aus der obigen Näherung erhält man für $N_2\hspace{0.15cm}\underline { = 11}$ Bit pro Abtastwert  &nbsp; ⇒  &nbsp; $M = 2048$ den Störabstand $66  \ \rm dB$.
 
*Mit $N = 10$ &nbsp; ⇒ &nbsp;  $M = 1024$ erreicht man nur ca. $60  \ \rm dB$.
 
*Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16$  &nbsp; ⇒  &nbsp;  $M = 65536$  &nbsp; ⇒  &nbsp;  $10 · \lg  \ ρ_v > 96 \ \rm dB$ verwendet.
 
  
 +
'''(3)'''&nbsp; For double-sideband amplitude modulation&nbsp; $\rm (DSB-AM)$,&nbsp; this would require&nbsp; $10 ⋅ \lg \ ξ = 40\ \rm dB$&nbsp;.
 +
*As can be seen from the graph in the data section,&nbsp; this abscissa value for the given PCM is lower by&nbsp; $30 \ \rm dB$&nbsp;⇒&nbsp; $10 ⋅ \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.
  
'''(3)'''&nbsp;  Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · \lg  \ ξ = 40\ \rm  dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer  ⇒  $10 · \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.
 
  
  
'''(4)'''&nbsp; Der logarithmische Wert $30 \ \rm dB$ entspricht einer um den $Faktor 10^3\hspace{0.15cm}\underline { = 1000}$ reduzierten Leistung.
+
'''(4)'''&nbsp; The logarithmic value&nbsp; $30 \ \rm dB$&nbsp; corresponds to a power reduced by a factor&nbsp; $10^3\hspace{0.15cm}\underline { = 1000}$&nbsp; .
  
  
'''(5)'''&nbsp; Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · \lg \ ξ= 6 \ \rm dB$ den Störabstand $20 \ \rm dB$ zur Folge hat. Aus $10 · \lg \ ρ_v = 20 \ \rm   dB$ folgt $ρ_v = 100$ und damit weiter (mit $N = N_1 = 8$):
+
 
 +
'''(5)'''&nbsp; From the graph in the information section,&nbsp; it can be seen that the abscissa value&nbsp; $10 \lg \ ξ= 6 \ \rm dB$&nbsp; results in the signal-to-noise ratio&nbsp; $20 \ \rm dB$.  
 +
*From&nbsp; $10 \lg \ ρ_v = 20 \ \rm dB$&nbsp; follows&nbsp; $ρ_v = 100$&nbsp; and thus further&nbsp; $($with&nbsp; $N = N_1 = 8)$:
 
:$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm}
 
:$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$
  
'''(6)'''&nbsp; Bei gleichem $ξ$ ist die Bitfehlerwahrscheinlichkeit weiterhin $p_{\rm B} = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert):
+
 
 +
'''(6)'''&nbsp; With the same performance parameter&nbsp; $ξ$,&nbsp; the bit error probability is still&nbsp; $p_{\rm B} = 0.025$.&nbsp; Thus, with&nbsp; $N = 3$&nbsp; (bits per sample):
 
:$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
 
:$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$
Weiter ist anzumerken:
+
Further,&nbsp; it should be noted:
*Bei nur drei Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_{\rm Q} = 0.015625$) schon größer als die Fehlerrauschleistung ($P_{\rm F} = 0.01$).  
+
*With only three bits per sample,&nbsp; the quantization noise power&nbsp; $(P_{\rm Q} = 0.015625)$&nbsp; is already larger than the error noise power&nbsp; $(P_{\rm E} = 0.01)$.  
*Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal $10 · \lg \ ρ_v =18 \ \rm dB$ betragen, wenn keine Bitfehler vorkommen ($P_{\rm F} = 0$).
+
*By increasing the transmit power,&nbsp; the signal-to-noise ratio could be maximum&nbsp; $10 \lg \ ρ_v =18 \ \rm dB$&nbsp; because of quantization, if no bit errors occur&nbsp; $(P_{\rm E} = 0)$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 91: Line 101:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.1 Pulscodemodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.1 Pulse Code Modulation^]]

Latest revision as of 16:18, 23 January 2023

Signal-to-noise ratio of PCM 30/32 compared to ZSB amplitude modulation

The graph shows the signal-to-noise ratio  $10 ⋅ \lg \ ρ_v$  for pulse code modulation  $\rm (PCM)$  compared to analog double-sideband amplitude modulation, abbreviated as  "$\rm DSB-AM$". 

For the latter,   $ρ_v = ξ$,  where the persormanc parameter

$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} $$

summarizes the following system parameters:

  • the frequency-independent attenuation factor  $α$  of the transmission channel,
  • the power  $P_{\rm S}$  of the transmitted signal  $s(t)$,&nbsp, also called  "transmit power"  for short,
  • the message frequency  $f_{\rm N}$  (bandwidth)  of the cosine source signal  $q(t)$,
  • the noise power density  $N_0$  of the AWGN noise.


For the PCM system,  the following approximation for the sink SNR was given in the section  "Estimation of SNR degradation due to bit errors",  which also takes into account transmission errors due to AWGN noise:

$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$
  • Here  $N$  denotes the number of bits per sample and  $p_{\rm B}$  the bit error probability.
  • Since  $ξ$  can in digital modulation also be interpreted as the  "signal energy per bit"  related to the  "noise power density"  $(E_{\rm B}/N_0)$,  with the complementary Gaussian error signal  ${\rm Q}(x)$  approximately:
$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$



Hints:


Questions

1

How many bits per sample   ⇒   $N = N_1$  does the PCM system under consideration use?

$N_1 \ = \ $

2

How many bits per sample   ⇒   $N = N_2$  would have to be used to achieve  $10 ⋅ \lg \ ρ_v > 64 \ \rm dB$  ("music quality")?

$N_2 \ = \ $

3

What  (logarithmized)  performance parameter  $ξ_{40\ \rm dB}$  is required for 8-bit PCM to have a signal-to-noise ratio of  $40\ \rm dB$ ?

$10 ⋅ \lg \ ξ_{40\ \rm dB} \ = \ $

$\ \rm dB$

4

By what factor could the transmit power be reduced for PCM compared to  "DSB-AM"  to still achieve  $10 ⋅ \lg \ ρ_v = 40\ \rm dB$ ?

$K_\text{AM → PCM} \ = \ $

5

What is the bit error probability  $p_{\rm B}$  for  $10 ⋅ \lg \ ξ = 6\ \rm dB$  and  $N = N_1$   ⇒   result of the subtask  (1)?

$p_{\rm B} \ = \ $

$\ \%$

6

What would be the SNR for the same  $ξ$  with a 3-bit PCM   ⇒   $N = 3$ ?

$10 ⋅ \lg \ ρ_v \ = \ $

$\ \rm dB$


Solution

(1)  The horizontal section of the PCM curve is determined by the quantization noise alone. 

  • Here,  with the quantization step number  $M = 2^N$:
$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$
  • From the readable signal-to-noise ratio  $10 ⋅ \lg \ ρ_v ≈ 48 \ \rm dB$  it follows:
      $N_1\hspace{0.15cm}\underline { = 8}$  bits per sample and for the quantization level number  $M = 256$.


(2)  From the above approximation,  we obtain for  $N_2\hspace{0.15cm}\underline { = 11}$  bits per sample   ⇒   $M = 2048$  the signal-to-noise ratio  $66 \ \rm dB$.

  • With  $N = 10$   ⇒   $M = 1024$  one reaches only approx.  $60 \ \rm dB$.
  • For the compact disc  $\rm (CD)$,  the PCM parameters  $N = 16$   ⇒   $M = 65536$   ⇒   $10 ⋅ \lg \ ρ_v > 96 \ \rm dB$  are used.


(3)  For double-sideband amplitude modulation  $\rm (DSB-AM)$,  this would require  $10 ⋅ \lg \ ξ = 40\ \rm dB$ .

  • As can be seen from the graph in the data section,  this abscissa value for the given PCM is lower by  $30 \ \rm dB$ ⇒  $10 ⋅ \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.


(4)  The logarithmic value  $30 \ \rm dB$  corresponds to a power reduced by a factor  $10^3\hspace{0.15cm}\underline { = 1000}$  .


(5)  From the graph in the information section,  it can be seen that the abscissa value  $10 ⋅ \lg \ ξ= 6 \ \rm dB$  results in the signal-to-noise ratio  $20 \ \rm dB$.

  • From  $10 ⋅ \lg \ ρ_v = 20 \ \rm dB$  follows  $ρ_v = 100$  and thus further  $($with  $N = N_1 = 8)$:
$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$


(6)  With the same performance parameter  $ξ$,  the bit error probability is still  $p_{\rm B} = 0.025$.  Thus, with  $N = 3$  (bits per sample):

$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$

Further,  it should be noted:

  • With only three bits per sample,  the quantization noise power  $(P_{\rm Q} = 0.015625)$  is already larger than the error noise power  $(P_{\rm E} = 0.01)$.
  • By increasing the transmit power,  the signal-to-noise ratio could be maximum  $10 ⋅ \lg \ ρ_v =18 \ \rm dB$  because of quantization, if no bit errors occur  $(P_{\rm E} = 0)$.